
Net2Plan 0.4.0

User's manual

15th February 2016

Pablo Pavón Mariño

Contents

1 Introduction 3

1.1 A brief overlook of Net2Plan . 3
1.1.1 Organization of this document . 4

1.2 Accompanying book and teaching materials . 4
1.3 Videotutorials . 5
1.4 Installing instructions . 5

1.4.1 Directories . 5
1.5 Licensing . 6
1.6 Authors . 6

1.6.1 Net2Plan . 6
1.6.2 Java Optimization Modeler (JOM) . 7

1.7 Citing Net2Plan and JOM in research works . 7
1.8 Release notes . 7

2 The Net2Plan network model 9

2.1 A network - NetPlan object . 9
2.2 Nodes - Node object . 10
2.3 Links - Link object . 10
2.4 Tra�c demands - Demand object . 11
2.5 Multicast tra�c demands - MulticastDemand object 12
2.6 Multicast trees - MulticastTree object . 12
2.7 Routing of unicast tra�c: source-routing vs. hop-by-hop routing 13

2.7.1 Routing loops . 14
2.7.2 Source-routing of the tra�c - Route object . 15
2.7.3 Source-routing of the tra�c - ProtectionSegment object 16

2.8 Shared-risk groups - SharedRiskGroup object . 17
2.9 Multilayer networks . 18

2.9.1 Network layers - NetworkLayer object . 18
2.10 The default failure model in Net2Plan . 19

2.10.1 Default failure model in multilayer networks . 20

3 The Net2Plan Graphical User Interface (GUI) 21

3.1 Menu File . 21
3.1.1 File → Options . 22
3.1.2 File → Classpath editor . 23
3.1.3 File → Java error console . 23
3.1.4 File → Java error console . 24

3.2 O�ine network design . 24
3.2.1 Network topology panel . 25
3.2.2 Warnings panel . 26
3.2.3 View/edit network state tab . 26
3.2.4 Algorithm execution tab . 29

1

Net2Plan 0.4.0 User's manual

3.2.5 View reports tab . 30
3.3 Tra�c matrix design . 31

3.3.1 Tra�c generation: general tra�c models . 31
3.3.2 Tra�c generation: population-distance tra�c model 32
3.3.3 Manual matrix introduction/edition . 34
3.3.4 Tra�c normalization . 34
3.3.5 Creating a set of tra�c matrices from a seminal one 35

3.4 Online network simulation . 35
3.4.1 The event driven simulation framework . 36
3.4.2 Graphical User Interface . 38

3.5 Help menu . 42

4 The Net2Plan Command-Line Interface (CLI) 43

4.1 Examples . 43

5 Development of algorithms and reports in Net2Plan 45

5.1 Net2Plan Library, Built-in Examples and Code Repository 46
5.2 JOM: Java Optimization Modeler . 46
5.3 Preparing a Java IDE for Net2Plan programming . 46

6 Technology-speci�c libraries 48

References 49

2

Chapter 1

Introduction

1.1 A brief overlook of Net2Plan

Net2Plan is an open-source and free to use Java-based software, licensed under the GNU Lesser General
Public License (LGPL). Net2Plan has its origins in September 2011, as an accompanying resource
for new network optimization courses at Telecommunications Engineering degrees in the Technical
University of Cartagena (Spain). After its creation, Net2Plan has spread to other Universities, and is
applied in a number of works in the academia and industry.

Net2Plan was designed with the aim to overcome the barriers imposed by existing network plan-
ning tools in two forms: (i) users are not limited to execute non-disclosed built-in algorithms, but also
can integrate their own algorithms, applicable to any network instance, as Java classes implementing
particular interfaces, and (ii) Net2Plan de�nes a network representation, so-called network plan, based
on abstract and teachnology-agnostic concepts such as nodes, links, tra�c unicast and multicast de-
mands, routes, multicast trees, forwarding rules, protection segments, shared-risk groups and network
layers.

Network instances can have an arbitrary number of layers, arranged in arbitrary forms. Technology-
speci�c information can be introduced via user-de�ned attributes attached to nodes, links, routes, layers
etc. in the network plan. The combination of a technology-agnostic substrate and technology-related
attributes provides the required �exibility to model any network technology within Net2Plan, an added
value from a didactic point of view. In this respect, current Net2Plan version provides speci�c libraries
to ease the design of IP, wireless and optical networks.

Net2Plan provides both a graphical user interface (GUI) and a command-line interface (CLI). In
either mode, Net2Plan includes four tools:

• O�ine network design: Targeted to execute o�ine planning algorithms, that receive a network
design as an input and modify it in any form (e.g. optimize the routing, the capacities, topology
etc.). Algorithms based on constrained optimization formulations (e.g. ILPs or convex formula-
tions) use the open-source freeware Java Optimization Modeler

http://www.net2plan.com/jom

to interface from Java to a number of external solvers such as GPLK, CPLEX or IPOPT, that
produce a numerical solution. The modeling syntax of JOM is human-readable, and capable
of handling arrays of decision variables and constraints of arbitrary dimensions, facilitating the
de�nition and solving of complex models directly from Java in a few lines of code.

3

http://www.net2plan.com/jom

Net2Plan 0.4.0 User's manual

• Online simulation: Permits building simulations of online algorithms that code how the network
reacts to di�erent events generated by built-in or user-developed event generation modules. For
instance, it can be used to evaluate network recovery schemes that react to failures and repairs
or dynamic provisioning algorithms that allocate resources reacting to time-varying tra�c de-
mands. Several built-in algorithms exist coding e.g. how IP/OSPF networks or some types of IP
over WDM multilayer networks react to tra�c �uctuations and failures. Also, some distributed
algorithms for congestion control, capacity allocation in wireless networks and other contexts,
are implemented as online algorithms, where nodes asynchronously iterate to adapt to network
conditions.

• Automatic report generation: Net2Plan permits the generation of built-in or user-de�ned reports,
from any network design.

• Tra�c matrix generation: Net2Plan assists users in the process of generating and normalizing
tra�c matrices, according to di�erent models.

1.1.1 Organization of this document

The rest of this chapter is devoted to describe some basic information about:

• Section 1.2 introduces an accompanying book published by the author with the theoretical fun-
damentals of network optimization, with a practical approach based on Net2Plan examples. The
majority of built-in algorithms come from examples thoroughly described in the book. Also,
teaching materials available in the website are introduced.

• Section 1.3 introduces the videotutorials available in the Net2Plan website.

• Section 1.4 comments on how to install and run Net2Plan.

• Section 1.5 comments on the license of Net2Plan and JOM.

• Section 1.6 comments on the Net2Plan origins and authorship.

• Section 1.7 informs on how we would prefer the work to be cited in research publications.

• Section 1.8 describes the release notes.

Then, Chapter 2 is devoted to describe the network representation in Net2Plan, and is an unavoid-
able reading for understanding the tool.

Chapter 3 describes the functionalities in the graphical user interface. Chapter 4 is focused on the
command-line interface. Chapter 5 is focused on the development of new algorithms and reports in
Net2Plan. Finally, Chapter 6 inform on some libraries and available algorithms in Net2Plan, speci�c
to networks technologies like IP/OSPF, wireless of WDM (optical).

1.2 Accompanying book and teaching materials

Net2Plan has been extensively used as an accompanying resource of the network optimization book:

Pablo Pavón Mariño, Optimization of computer networks. Modeling and algorithms. A
hands-on approach. Wiley, May 2016.

4

Net2Plan 0.4.0 User's manual

The book is targeted to grow in the reader the ability to model a multitude of network optimization
problems, and create algorithms for them. The book materials indexed in the repository

http://www.net2plan.com/ocn-book

include all the examples of models and algorithms in the book implemented as Net2Plan o�ine and
online algorithms, and reports. They can be used to �nd numerical solutions to multiple real-life
network problems. The book also includes exercises where the reader can develop and test their own
Net2Plan algorithms, applying the techniques described.

A number of teaching materials for some courses using Net2Plan are provided in the Net2Plan
website (e.g. lab work wordings).

1.3 Videotutorials

In the website, there is a video tutorial section in which users can see instructions and examples of
how to use Net2Plan, and how to develop algorithms for it. The interested reader is encouraged to go
through them.

1.4 Installing instructions

For installing the software, just uncompress the .rar �le provided in any folder. For running the
software just click in the Net2Plan.jar �le. The software does not modify any registry information in
the computer. For uninstalling, just remove the folder.

Net2Plan requires Java Runtime Environment 7 or higher versions and a screen resolution of, at
least, 800x600 pixels. Since it is developed in Java, it works in the most well-known operation systems
(Microsoft Windows, Linux, Mac OS X).

To install Net2Plan, just save the compressed �le in any directory. Then, extract all the �les and
folders into a new directory. The software does not modify any registry information in the computer.
For uninstalling, just remove the folder.

To execute Net2Plan in Graphical User Interface (GUI) mode (see Chapter 3), just double click on
Net2Plan.jar, or execute the following command in a terminal: java -jar Net2Plan.jar.

To execute Net2Plan in Command-Line Interface (CLI) mode (see Chapter 4), execute the following
command in a terminal: java -jar Net2Plan-cli.jar.

Important : Net2Plan makes use of the Java Optimization Modeler (JOM) library for solving opti-
mization models interfacing to external solvers. JOM is shipped with Net2Plan, and used in a number
of built-in algorithms and some functionalities. Please, follow the instructions in the JOM website
(http://www.net2plan.com/jom) to install the external solvers needed. If these solvers are not in-
stalled, Net2Plan still works correctly, but the user cannot access the subset of functionalities and
algorithms using JOM.

1.4.1 Directories

The directories in the Net2Plan installation are:

5

http://www.net2plan.com/ocn-book
http://www.net2plan.com/jom

Net2Plan 0.4.0 User's manual

• doc/help: includes this user's guide.

• doc/javadoc: the Javadoc of Net2Plan (needed by algorithm developers).

• lib: Includes auxiliary libraries needed by Net2Plan.

• src: Includes the Net2Plan code, and some examples.

• plugins: Includes the Java classes and source code of some of the plugins in which Net2Plan is
organized.

• workspace: includes example code and data.

• workspace/data: includes example topologies and tra�c matrices.

1.5 Licensing

Net2Plan is free and open-source. It is licensed under the GNU Lesser General Public License Version
3 or later (the �LGPL�).

1.6 Authors

1.6.1 Net2Plan

Net2Plan tool has its origins in 2011, during the preparation of the teaching materials for two new
courses at Universidad Politécnica de Cartagena (Spain) taught by Prof. Pablo Pavón Mariño, in
Telecommunications Engineering degrees:

• Telecommunication networks theory (2nd year, 2nd quarter).

• Network planning and management (3rd year, 2nd quarter).

Up to version 0.3.1, Net2Plan was also a part of the Ph.D. work of José Luis Izquierdo Zaragoza,
supervised by Prof. Pablo Pavón Mariño.

The authors and developers of Net2Plan are:

• Pablo Pavón Mariño and José Luis Izquierdo Zaragoza up to version 0.3.1.

• Pablo Pavón Mariño, from version 0.4.0 onwards. Naturally, the credit for the code inherited
from initial Net2Plan versions is shared with José Luis!

Prof. Pablo Pavón would like to credit José Luis for his extraordinary commitment and e�orts in
Net2Plan origins, and to the members of GIRTEL research group (http://girtel.upct.es), as well
as the students, practitioners and researchers using Net2Plan, for their fruitful feedback.

6

Net2Plan 0.4.0 User's manual

1.6.2 Java Optimization Modeler (JOM)

Prof. Pablo Pavón Mariño is the author of JOM (Java Optimization Modeler), an open-source Java
library for modeling and solving optimization problems in a simple MATLAB-like syntax. JOM is a
library extensively used in Net2Plan algorithms that numerically solve network problems by means of
optimization solvers.

The JOM website is:

http://www.net2plan.com/jom

1.7 Citing Net2Plan and JOM in research works

In research works, Net2Plan can be cited using the publication:

P. Pavon-Marino, J.L. Izquierdo-Zaragoza, �Net2plan: an open source network planning
tool for bridging the gap between academia and industry�, IEEE Network, vol. 29, no 5,
p. 90-96, October/November 2015.

To cite JOM, please use the web site link:

http://www.net2plan.com/jom

Many built-in algorithms and reports in Net2Plan (many of them using JOM) are thoroughly
described in the book:

Pablo Pavón Mariño, Optimization of computer networks. Modeling and algorithms. A
hands-on approach. Wiley, May 2016.

1.8 Release notes

• Net2Plan 0.4.0 (February 15, 2016)

� Major changes in the form in which the network model is programmed. Now NetPlan

object gives access to a number of other elements in their own classes: Node, Link, Demand,
MulticastDemand, ... Also, all the elements have both an identi�er (long, maybe non-
consecutive, never changes along time) and an index (0,1,...) (0-indexed and consecutive,
removing an element renumbers the rest). Link, node, demand etc. indexes are amenable
as array indexes. Then, the laborious Map-based organization of the elements in the network
model is not longer needed. In general, the algorithms' code get much simpler and clearer.

� Full support for multicast tra�c.

� Some new options in the graphical user interface.

� Full re-elaboration and reorganization of the built-in examples and reports, including plenty
of new algorithms, to make Net2Plan an accompanying resource of [1].

• Net2Plan 0.3.1 (November 23, 2015)

� Minor changes.

7

http://www.net2plan.com/jom
http://www.net2plan.com/jom

Net2Plan 0.4.0 User's manual

� Improved documentation.

� New: A new plugin architecture (undocumented) has been created to support the integration
of external CLI/GUI tools or I/O �lters. Original plugins are dettached from the kernel
and are also located into plugins folder.

• Net2Plan 0.3.0 (June 29, 2015)

� Major changes in network model:

∗ New: Complete multilayer support, including layer coupling (links at an upper layer
become demands at a lower layer, or viceversa).

∗ New: Identi�ers for nodes, links, demands, and so on, are now long values. get()

methods, whose output were arrays, now return maps.

∗ New: Internal speed-up via caching of common get() methods.

� New: Online simulation is a new tool that merges the previous simulators into a common
one, and it uses the same network model than for network design.

� Improved documentation

• Net2Plan 0.2.3 (March 7, 2014)

� Minor changes.

� Improved documentation.

• Net2Plan 0.2.2 (October 16, 2013)

� Minor changes

� Improved documentation

• Net2Plan 0.2.1 (May 23, 2013)

� New: Time-varying tra�c simulator.

� New: Network design is now able to execute multilayer algorithms.

� Minor changes.

• Net2Plan 0.2.0 (March 18, 2013)

� Initial Java version, many major changes from latest MATLAB version

In its very early stage Net2Plan was designed as a MATLAB toolbox. From version 0.2.0, previous
MATLAB versions were discontinued, thus backward-compatibility is not ensured at all. However,
interested users can �nd them in the website.

8

Chapter 2

The Net2Plan network model

This chapter describes the network model used in Net2Plan, and the key Java classes used to represent
it.

2.1 A network - NetPlan object

A network design is stored into a data structure so-called network plan, the class:

com.net2plan.interfaces.networkDesign.NetPlan

in the Net2Plan library). The NetPlan object is used in all the Net2Plan functionalities:

• In the o�ine network design tool, algorithms receive a network plan and return a modi�ed
network plan. E.g. an algorithm optimizing the routing, expects to receive a NetPlan object
with nodes, links and tra�c, and adds the routing information to it.

• In the online tool, the NetPlan object contains the state of the network at a particular simulation
moment. Online algorithms receive the current design, an event to react to (e.g. new tra�c,
a failure or reparation...) and produce the new network state by modifying the given NetPlan

object.

• Reports are just built-in or user-de�ned that receive a design (NetPlan object) and produce a
HTML �le.

There is one and only one NetPlan object in each network representation, that gives access through
its methods to all the network elements (nodes, links, demands, etc.), which are represented in the
model by speci�c classes like Node, Link, Demand, MulticastDemand...

Speci�c network-wide information included in the NetPlan object is:

• A network name (an arbitrary String).

• A network description (an arbitrary String).

• User-de�ned name-value attributes, as a Map<String,String>.

The structure of the NetPlan class is cornerstone to understand how Net2Plan works. Below, we
describe separately each of the elements that make up a design.

9

Net2Plan 0.4.0 User's manual

2.2 Nodes - Node object

Nodes are the basic entity of a network design. They can be the end points of the links, the sources
or destinations of tra�c, and also forward tra�c not targeted to them.

Each node in a network is represented by a Node object, contained inside the NetPlan object.
Speci�c node information contained in this object is:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Nodes created later receive higher numbers, but not necessarily
consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the nodes. Node indexes are
renumbered when a node is removed (e.g. when node with index 0 is removed, all the other nodes
reduce their index in one).

• Name (String): An arbitrary String with name of the node.

• (X, Y) coordinates: The coordinates of the node in a bidimensional Cartesian plane. Serves
for visualization and can be optionally used to automatically compute the length of the links
between the nodes.

• Up/down state: A node can be up (working correctly) or down (failed). In the latter case,
Net2Plan assumes that it is not able to forward tra�c. The carried tra�c and occupied link
capacity of all the traversing routes, multicast trees or protection segments is then set to zero,
and is set back to its previous value when the resource gets up again.

• User-de�ned name-value attributes, as a Map<String,String>.

2.3 Links - Link object

Links are elements connecting the nodes, with the capability of carrying tra�c between them. Links
are always unidirectional. A link starts in one node, and ends in a di�erent node (self-links are not
allowed). Two nodes can be connected by zero, one or more links.

Each link in a network is represented by a Link object. Each link is characterized by:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Links created later receive higher numbers, but not necessarily
consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the links inside a given network
layer. Link indexes are renumbered when a link in the same layer is removed (e.g. when link
with index 0 is removed, all the other links reduce their index in one).

• Origin node (Node): The node where the link starts.

• Destination node (Node): The node where the link ends.

• Network layer (NetworkLayer): (Of interest in multilayer designs) The layer where the link
belongs to. A link belongs to one and only one network layer. Note that in multilayer networks,
nodes are not attached to any particular layer, while links are. Then, nodes are the elements in
charge of moving tra�c from one layer to other (tra�c entering a node through a link at a given
layer, and leaving it through other link at other layer).

10

Net2Plan 0.4.0 User's manual

• Capacity (double): The capacity of the link, measured in the link's layer capacity units (the
capacity of all the links in the same layer is measured in the same units).

• Length (double): The length in km of the link.

• Propagation speed (double): The propagation speed of the signal along the link. Typically
200,000 km/s in wired networks, and 300,000 km/s in wireless. This is used in delay calculations.

• Up/down state: A link can be up (working correctly) or down (failed). In the latter case,
Net2Plan assumes that it is not able to forward tra�c. The carried tra�c and occupied link
capacity of all the traversing routes, multicast trees or protection segments is then set to zero,
and is set back to its previous value when the resource gets up again.

• Coupled demand (Demand): (Of interest in multilayer designs) In multilayer networks, a link in
an upper layer can be coupled to a demand in a lower layer with the same end nodes, to re�ect
that the lower layer demand is realizing the link. In these cases, the link capacity is no longer
de�ned by the user, but automatically made equal to the coupled demand carried tra�c. See
Section 2.9 for further information.

• User-de�ned name-value attributes, as a Map<String,String>.

2.4 Tra�c demands - Demand object

Unicast tra�c is modeled through a set of demands (or commodities). Each demand represents an
o�ered end-to-end unidirectional tra�c �ow to the network, between two di�erent particular nodes
(self-demands are not allowed). Two nodes can have zero, one or more demands between them.

Each demand in a network is represented by a Demand object. Each demand is characterized by:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Demands created later receive higher numbers, but not necessarily
consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the demands inside a given
network layer. Demand indexes are renumbered when a demand in the same layer is removed
(e.g. when demand with index 0 is removed, all the other demands reduce their index in one).

• Ingress node (Node): The node where the demand starts.

• Egress node (Node): The node where the demand ends.

• Network layer (NetworkLayer): (Of interest in multilayer designs) The layer where the demand
belongs to. A demand belongs to one and only one network layer.

• O�ered tra�c (double): The amount of o�ered tra�c, measured in the demands' layer tra�c
units (the o�ered tra�c of all the demands in the same layer is measured in the same units). The
tra�c that is actually carried depends on how the demand tra�c is routed (see Section 2.7).

• Coupled link (Link): (Of interest in multilayer designs) In multilayer networks, a demand in the
lower layer can be coupled to a link in an upper layer with the same end nodes, to re�ect that
the lower layer demand is realizing the link. In these cases, the link capacity is no longer de�ned
by the user, but automatically made equal to the coupled demand carried tra�c. See Section
2.9 for further information.

• User-de�ned name-value attributes, as a Map<String,String>.

11

Net2Plan 0.4.0 User's manual

2.5 Multicast tra�c demands - MulticastDemand object

Multicast tra�c is modeled through a set of multicast demands. Each demand represents an o�ered
multicast tra�c �ow, starting in a particular ingress node, and ending in a particular set of egress
nodes (di�erent to the ingress node). The number of multicast demands a�ecting a node is arbitrary.

Each multicast demand in a network is represented by a MulticastDemand object. Each multicast
demand is characterized by:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Multicast demands created later receive higher numbers, but not
necessarily consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the multicast demands inside
a given network layer. Multicast demand indexes are renumbered when a multicast demand in
the same layer is removed (e.g. when multicast demand with index 0 is removed, all the other
demands reduce their index in one).

• Ingress node (Node): The node where the multicast demand starts.

• Egress nodes (Set<Node>): The set of nodes where the multicast demand ends.

• Network layer (NetworkLayer): (Of interest in multilayer designs) The layer where the multicast
demand belongs to. A multicast demand belongs to one and only one network layer.

• O�ered tra�c (double): The amount of o�ered tra�c, measured in the demands' layer tra�c
units (the o�ered tra�c of all the demands in the same layer is measured in the same units). The
tra�c that is actually carried depends on how the multicast demand tra�c is routed through its
associated multicast trees.

• Coupled links (Set<Link>): (Of interest in multilayer designs) In multilayer networks, a multicast
demand in the lower layer can be coupled to a set of links in the upper layer, all of them starting in
the demand ingress node, and ending in each of the multicas demand egress nodes. The coupling
re�ects that the lower layer multicast demand is realizing the set of links. In these cases, the
link capacities are no longer de�ned by the user, but automatically made equal to the coupled
multicast demand carried tra�c. See Section 2.9 for further information.

• User-de�ned name-value attributes, as a Map<String,String>.

2.6 Multicast trees - MulticastTree object

A multicast tree is an element carrying the tra�c of a multicast demand. It is composed of a set of
links comprising a unidirectional tree, starting in the associated multicast demand ingress node, and
ending at its egress nodes. Multicast trees must connect the ingress node and each of the egress nodes
without loops. This results in that the number of links in the tree will be equal to the number of nodes
minus one.

A multicast tree can be assigned to only one multicast demand, but a multicast demand can be
carried by zero, one or more trees. When the number of trees is two or more, we say that the multicast
routing is bifurcated.

Each multicast tree in a network is represented by a MulticastTree object. Each multicast tree is
characterized by:

12

Net2Plan 0.4.0 User's manual

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Multicast trees created later receive higher numbers, but not
necessarily consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the multicast tree inside a
given network layer. Multicast tree indexes are renumbered when a multicast tree in the same
layer is removed (e.g. when multicast tree with index 0 is removed, all the other trees reduce
their index in one).

• Associated multicast demand (MulticastDemand): The multicast demand of which this tree is
carrying tra�c. The ingress and egress nodes of the demand must be the ones of the tree.

• Carried tra�c (double): The amount of tra�c that this tree is carrying, measured in the tree
layer tra�c units.

• Occupied link capacity (double): The amount of capacity in the traversed links that this multicast
tree occupies, measured in the tree layer link capacity units. Typically, the demand tra�c and
link capacity are measured in the same units (e.g. Gbps), and the tree carried tra�c equals its
occupied link capacity.

• User-de�ned name-value attributes, as a Map<String,String>.

2.7 Routing of unicast tra�c: source-routing vs. hop-by-hop routing

The routing inside a network layer is the form in which the o�ered tra�c represented by the demands
is carried on the layer links. In Net2Plan there is only one form of routing the multicast tra�c: using
multicast trees. However, Net2Plan permits de�ning two di�erent forms of routing the unicast tra�c
inside a layer:

• Source-routing : In source routing, each tra�c demand is assigned a set of routes, from its ingress
to its egress node. A route de�nes a sequence of traversed links, the amount of tra�c of the
demand that it carries (in tra�c units) and the amount of capacity that consumes in each link
(in link capacity units). Source routing is characteristic of connection-oriented technologies like
MPLS, ATM, OTN or SONET/SDH, where a �ow completes a connection establishment stage
before sending any data. During this stage, the network decides and precon�gures the �ow
routing in the traversed nodes.

• Hop-by-hop routing : In hop-by-hop routing, nodes in the network de�ne the routing using so-
called forwarding rules. Forwarding rules are triples (d, e, f), where d is a demand, e a link and
f a number between 0 and 1. f represents the fraction of tra�c that appears in the origin node
of link e (either is generated by it if it is the ingress of d, or enters it through the input links),
that is forwarded through link e.

Typically, the forwarding rules of the output links of a node are con�gured in structures called
routing tables or forwarding tables in it. Given a node n, and a demand d, the forwarding rules
of d associated to the node output links must sum at most 100%:

� If they sum 100%, the node forwards all the tra�c of the demand. This is the typical case
when the node is not the egress node of the demand.

� If n is the end node of the demand d, the output forwarding rules typically sum zero.
Net2Plan assumes that the non-forwarded tra�c was successfully received.

� If they sum less than 100% (e.g. 0%), and the node is not the end node of the demand,
Net2Plan assumes that non-forwarded tra�c is dropped in the node.

13

Net2Plan 0.4.0 User's manual

Figure 2.1: Example of a closed loop (3-2-5), for a demand from node 1 to node 4.

Forwarding rules re�ect better the behavior of connectionless network layers, where a source can
inject tra�c without a previous connection establishment. The two common cases are IP and
Ethernet networks. These networks are based on forwarding rules de�ned in the nodes, with
the particular aspect that forwarding decisions typically depend solely on the destination of the
tra�c. To model this with Net2Plan, all the forwarding rules in a node, for the demands which
have the same egress node (e.g. whatever its ingress node is) should be the same.

2.7.1 Routing loops

In both source-routing and hop-by-hop routing looping situations can occur.

In source routing, a route is de�ned by speci�cally determining the sequence of links to traverse.
Net2Plan allows routes which traverse a node and/or a link more than once, and thus routings with
arbitrary loops can be de�ned, as long as they are of �nite length.

The de�nition of the forwarding rules can also create loops, as occurs in reality. However, the
routing loops in hop-by-hop networks have a de�ning aspect: the tra�c can potentially make an
in�nite number of hops when it enters a routing loop. We distinguish two di�erent situations:

• Closed loops where the tra�c entering in them never reaches the destination (e.g. Fig. 2.1). In
this case, the tra�c only enters the loop and never leaves it, and thus accumulates and saturate
the link capacity.

• Open loops where the tra�c entering a loop can make a number of cycles, and eventually leave it
reaching the destination- Fig. 2.2 shows an example. In this case, a tra�c unit to node 4 reaching
node 2, could enter the cycle between nodes 2-5 or nodes 2-3-5. If the forwarding decision in each
node is randomly taken, the probability of staying in the loop after k hops is positive for any k.

Naturally, looping situations in hop-by-hop networks would re�ect a wrong design of the routing
tables. Net2Plan is equipped with the appropriate functions to detect them, and to determine the
tra�c in the links from the o�ered tra�c and forwarding rules also in this cases. Further details on
the techniques to do that can be consulted in Chapter 4 of [1].

14

Net2Plan 0.4.0 User's manual

Figure 2.2: Example of an open loop (3-2-5), for a demand from node 1 to node 4.

2.7.2 Source-routing of the tra�c - Route object

In the source-routing case, each unicast tra�c demand is assigned an arbitrary set of routes, which
determine how the demand tra�c is carried. Each route is de�ned by a sequence of links of the same
layer where the demand belongs to, that make up a path from the demand ingress node to the demand
egress node.

A route can be assigned to only one demand, but a demand can be carried by zero, one or more
routes. When the number of routes is two or more, we say that the unicast routing is bifurcated.

A route can be assigned an arbitrary number of protection segments. These are fractions of capacity
in the links that are reserved, and can be used to reroute some routes in case of failure.

Each route in a network is represented by a Route object. Each route is characterized by:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Routes created later receive higher numbers, but not necessarily
consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the route inside a given
network layer. Route indexes are renumbered when a route in the same layer is removed (e.g.
when route with index 0 is removed, all the other routes reduce their index in one).

• Associated demand (Demand): The demand of which this route is carrying tra�c. The ingress
and egress nodes of the demand must be the ones of the route.

• Initial sequence of links (List<Link>): The sequence of links of the route, when the route was
created. This must be a sequence of links forming a path from the demand ingress to the demand
egress node.

• Current sequence of links and/or protection segments (List<Link>): The current sequence of
links of the route. This may be di�erent to the initial path if some rerouting was performed. In
particular, the rerouting can now decide to traverse protection segments, which are represented
by ProtectionSegment objects, subclasses of Link (see Section 2.7.3 for details).

• Carried tra�c (double): The amount of tra�c that this route is carrying, measured in the route
layer tra�c units.

15

Net2Plan 0.4.0 User's manual

• Occupied link capacity (double): The amount of capacity in the traversed links that this route
occupies, measured in the route layer link capacity units. Typically, the demand tra�c and link
capacity are measured in the same units (e.g. Gbps), and the route carried tra�c equals its
occupied link capacity.

• Usable backup protection segments (Set<ProtectionSegment>): The set of protection segments
that could be used by the route to reroute the tra�c (e.g. to react to a link failure).

• User-de�ned name-value attributes, as a Map<String,String>.

2.7.3 Source-routing of the tra�c - ProtectionSegment object

In source-routing, a protection segment is a sequence of links forming a path (that is, the end of a
link is the start of the next link), with a given link capacity reserved in each. The reserved capacity is
substracted from the link capacity that is usable by the routes and multicast trees traversing the links.

Each protection segment in a network is represented by a ProtectionSegment object, which is a
subclass of Link (where the link end nodes correspond to the segment end nodes, and the segment
reserved capacity is the link capacity).

The typical use of protection segments, is ease the modeling of network recovery schemes that
reserve link capacity in advance, to be used in the case of a network failure. In particular, Net2Plan
o�ers built-in algorithms where a route a�ected by a failure (a traversed link or node failed), is rerouted
using (i) the surviving links in the route, and (ii) the reserved capacity in the associated protection
segments. Then, by using these algorithms and an appropriate de�nition of protection segments, it is
possible to fast prototype recovery schemes like:

• In 1+1 dedicated protection schemes, each route has a backup path with the same reserved
capacity as the route. To model them, we would create a protection segment per route, with the
same end nodes (although typically with a link-disjoint path) and a reserved capacity equal to
the occupied link capacity.

• In shared protection schemes, a protection segment is associated as the backup of more than one
route. For instance, two routes can share a common backup path.

• In link protection schemes, the failure of a link is protected using a pre-established subpath from
the link initial to the link end node. This can be modeled de�ning a protection segment for the
path protecting a link, and associate all the routes traversing the link to it.

Recall that since a protection segment is also a link (subclass of Link), a List<Link> object
re�ecting the current path of a route, can host an arbitrary sequence of traversed links and/or protection
segments to carry the tra�c in the case of failure.

Protection segments are characterized by:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Protection segments created later receive higher numbers, but not
necessarily consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the protection segment inside
a given network layer. Segment indexes are renumbered when a segment in the same layer is
removed (e.g. when segment with index 0 is removed, all the other segments reduce their index
in one).

16

Net2Plan 0.4.0 User's manual

• Sequence of links (List<Link>): The sequence of links (not protection segments) forming a path
(a link starts where the previous link ends) that make up the path of this segment. The segment
end nodes do not have to be equal to the end nodes of any route it is backing up, but all the
links must belong to the same layer, which will be the layer of the protection segment.

• Associated routes (Set<Route>): The set of routes that this segment can be backup to, all of
them of the layer of the protection segment.

• Link reserved capacity (double): The amount of capacity in the traversed links that is reserved
for protection, measured in the layer link capacity units.

• User-de�ned name-value attributes, as a Map<String,String>.

2.8 Shared-risk groups - SharedRiskGroup object

A shared-risk group (SRG) represents a particular risk of failure for the network that, if happens,
creates a simultaneous failure in a particular set of links and/or nodes. For instance, a SRG can be
associated to the risk of accidentally cutting a particular duct that holds the links between two nodes
(e.g. one in each direction). If this cut occurs, the two links would fail simultaneously. Then, they
would remain unavailable until a reparation of the damage is completed.

Each SRG in a network is represented by a SharedRiskGroup object. Each SRG is characterized
by:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. SRGs created later receive higher numbers, but not necessarily
consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the SRG. SRG indexes are
renumbered when a SRG is removed (e.g. when SRG with index 0 is removed, all the other SRGs
reduce their index in one).

• Mean Time To Fail (MTTF) (double): The average time between two consecutive failures.

• Mean Time To Repair (MTTR) (double): The average time between the moment the failure
occurs, until it is repaired.

• Associated set of nodes (Set<Node>): The nodes that simultaneously fail when the risk associated
to the SRG occurs.

• Associated set of links (Set<Link>): The links that simultaneously fail when the risk associated
to the SRG occurs.

• User-de�ned name-value attributes, as a Map<String,String>.

SRGs are used to model the failure risks that threat the network, and eases the design and evaluation
of the network recovery mechanisms. As an example, SRG information is used by some built-in
online algorithms that create failure and reparation events in the network according to the statistical
information in the SRGs, and send these events to the recovery algorithms that must react to them.
Also, some built-in Net2Plan reports can estimate analytically the availability of the network for
arbitrary network recovery mechanisms (protection or restoration based), from the SRG information.

17

Net2Plan 0.4.0 User's manual

2.9 Multilayer networks

Communication networks are organized into layers, governed by di�erent protocols and potentially
managed by di�erent companies or institutions, such that the links in an upper layer appear as tra�c
demands carried by the lower layer in an underlying topology. For instance, in IP over WDM optical
networks:

• The upper layer is composed of a set of IP routers, connected through optical connections of
�xed capacity (e.g. 10 Gbps, 40 Gbps, 100 Gbps) called lightpaths. The IP routers see each
lightpath as a direct link or pipe to other router, and the tra�c is routed on top of the lightpaths
according to the IP nodes routing tables.

• In the upper layer, each lightpath is a demand to carry traversing a path of optical �bers in the
underlying topology of optical �bers. Each lightpath is assigned a wavelength, that cannot be
changed along its route, unless wavelength conversion devices are available. The optical switching
nodes forwarding the lightpaths are called Optical Add/Drop Multiplexers (OADMs).

Thus, in the previous example, a lightpath appears to the IP layer as a direct link between two
routers of a �xed capacity, irrespective of the actual route of the lightpath across the �bers. The
topology of IP links (each corresponding to a lightpath) is usually referred to as the virtual topology,
since each link is not backed by an actual wire, but by a lightpath that follows an arbitrary optical
path across the �ber topology.

Multiple other examples exist of multilayer networks. For instance, a common three-layer structure
is that of IP routers connected through a topology of MPLS virtual circuits, that are routed on top of
a topology of lightpaths, that are routed on top of a topology of optical �bers.

2.9.1 Network layers - NetworkLayer object

To be able to represent arbitrary multilayer designs, in Net2Plan, a network is composed of a number
of layers, at least one. One out of them is de�ned as the so-called default layer. In many methods
indicating the layer of a link, demand, route etc. is optional, and if not speci�ed, the default layer is
assumed. Thanks to this, common users not interested in multilayer designs can work without really
knowing the possible complexities of multilayer networks. Also, it is possible to use (without any
change) algorithms or reports for single layer networks in a selected layer of a multilayer design, by
just setting our layer of interest as the default (e.g. selecting it in the graphical user interface).

According to the Net2Plan multilayer model, the following elements are associated to one and only
one network layer:

• Link

• Demand

• Multicast demand

• Route

• Protection segment

• Forwarding rules

18

Net2Plan 0.4.0 User's manual

That is, the o�ered tra�c, the links, and how the tra�c is routed on them can be de�ned di�erently
for each network layer. Actually, a layer can de�ne the routing in a hop-by-hop form, and other using
source-routing, as often occurs in reality.

The following elements are not associated to a particular network layer:

• Nodes: a node can have input/output links at di�erent layers.

• Shared risk groups: Represent a risk of failure that can a�ect e.g. links at di�erent layers.

Each layer in a network is represented by a NetworkLayer object. Each network layer is character-
ized by:

• Id (long): A unique identi�er or serial number assigned by the kernel, that never changes along
the life of the NetPlan object. Network layers created later receive higher numbers, but not
necessarily consecutive.

• Index (int): An identi�er (int) assigned by the kernel 0,1,2,... to the network layer. Layer
indexes are renumbered when a layer is removed (e.g. when layer with index 0 is removed, all
the other layers reduce their index in one).

• Name (String): An arbitrary network layer name (e.g. ÏP�).

• Description (String): An arbitrary network layer description (e.g. �The IP layer of my network�).

• Tra�c units (String): A string de�ning the units in which the o�ered and carried tra�cs in the
layer are measured (e.g. �Mbps�).

• Link capacity units (String): A string de�ning the units in which the capacity of all the links
in the layer is measured (e.g. �Mbps�). Typically, tra�c and link capacity units are the same.
However, in some occasions it may be interesting to have di�erent units (e.g. tra�cs in Mbps
and link capacities in �number of channels`�, or in �MHz�).

• User-de�ned name-value attributes, as a Map<String,String>.

2.10 The default failure model in Net2Plan

In order to evaluate network resilience mechanisms, the network model allows setting up or down nodes
and links. The default behavior of Net2Plan corresponds to a network that makes nothing to adapt
to the failures, and just the a�ected tra�c is dropped. Naturally, in the online network design, the
user can use other built-in algorithms that react to network failures according to particular network
recovery schemes, or implement its own one.

The default reaction of Net2Plan to link and node failures is described below.

• When a link sets its state to down (failed), then:

� If the routing type in the link layer is source-routing, all the traversed routes set their carried
tra�c and occupied capacity in the traversed links to zero. This also a�ects to the routes us-
ing protection segments that traverse the link. Calling the methods getCarriedTraffic or
getOccupiedLinkCapacity for these routes would return a zero. However, calling the meth-
ods getCarriedTrafficInNoFailureState and getOccupiedCapacityInNoFailureState

would return the nominal carried tra�c and occupied link capacities, the one that would
exist if no failed resources were traversed.

19

Net2Plan 0.4.0 User's manual

� If the routing type in the link layer is hop-by-hop routing, all the forwarding rules of the
link are set to zero, for all the demands, and the routing for all the network is recomputed.

• When a link sets its state to up (is repaired), then:

� If the routing type in the link layer is source-routing, all the traversed routes are checked.
If thanks to this repair, now they traverse only up nodes and links, its carried tra�c ad occu-
pied link capacities get their nominal values (the ones returned by getCarriedTrafficInNoFailureState
and getOccupiedCapacityInNoFailureState methods of the route).

� If the routing type in the link layer is hop-by-hop routing, all the forwarding rules of the
link take the nominal values, for all the demands, and the routing in the whole network is
recomputed.

The failure and repair of a node is equivalent to simultaneous failure and repair of all the in/out
links of the node.

2.10.1 Default failure model in multilayer networks

Recall that in the multilayer representation of Net2Plan, upper layer links are implemented as tra�c
demands in the lower layer, and the upper layer link capacity is made equal to the coupled demand
carried tra�c.

A failure in the links of a lower layer, can make the carried tra�c of a demand in the same lower layer
drop, even become zero. This capacity update is automatically seen by the coupled upper layer link.
However, the upper layer link does not become automatically down. Users developing network recovery
algorithms for multilayer networks should take this into account (e.g. if they want to propagate the
failure to the upper layer, by setting the upper layer links as down, they have to program this behavior
themselves).

20

Chapter 3

The Net2Plan Graphical User Interface
(GUI)

The graphical user interface of Net2Plan is launched by double clicking in the Net2Plan.jar �le after
decompressing the �le with the Net2Plan distribution. It is also possible to launch it with the command
java -jar Net2Plan-jar from a console.

Fig. 3.1 shows the initial user interface, where a welcome message is printed. From it, the user can
choose among the following menus:

• File, to access some general con�guration options. They will be described in Section 3.1.

• Tools, gives access to the three main tools within Net2Plan: o�ine network design, tra�c
matrix manipulation, and online simulator. They will be described in Section 3.2, 3.3 and 3.4
respectively.

• Help, gives access to Net2Plan documentation and the welcome(about) screen. This menu is
described in Section 3.5.

3.1 Menu File

This menu has four options: Options, Classpath Editor, Show Java console, and Exit.

Figure 3.1: Net2Plan welcome screen.

21

Net2Plan 0.4.0 User's manual

Figure 3.2: Con�gurable options in the Options menu.

3.1.1 File → Options

Use Options to set Net2Plan-wide parameters. These options have a global scope to all Net2Plan
modules: are used within the kernel, and, for instance, to compute delay metrics in built-in reports.
The description of each parameter is included next to its name. Users implementing their own algo-
rithms/reports have read access to these parameters, as a map that links the parameter name and its
current value.

In this version the general con�gurable options (Fig. 3.2) are:

• precisionFactor: Precision factor for checks to overcome numeric errors. This parameter allows
considering in the kernel small tolerances in the sanity-checks of the network designs. It avoids
situations in which numerical inaccuracies (e.g. caused by �nite precision of the solvers) would be
interpreted as errors. For instance, if an algorithm returns a design where the tra�c carried by
a link is 10.0000001 and link capacity is 10, the kernel may show a warning. The precision factor
applies since the actual check performed has a margin given by the precision factor. Default
value of precisionFactor is 10−3 , and its value is constrained to be in range (0,1).

• defaultRunnableCodePath: Default path that will be used by tools in the GUI as the �rst option
to load external code (e.g. algorithms). It can be either a .jar �le or a folder. Default value is
the BuiltInExamples.jar included within Net2Plan.

• defaultILPSolver: Default solver to be used for solving Linear Programs (LP) or Mixed Integer
Linear Programs (MILP). Default: glpk.

• defaultNLPSolver: Default solver to be used for solving Non-Linear Programs (NLP). Default:
ipopt.

• cplexSolverLibraryName: Default path for cplex library (.dll/.so �le). Default: None

• glpkSolverLibraryName: Default path for glpk library (.dll/.so �le). Default: None

• ipoptSolverLibraryName: Default path for ipopt library (.dll/.so �le). Default: None

22

Net2Plan 0.4.0 User's manual

Figure 3.3: Con�gurable options in the Options menu.

Default solvers are used for a few internal operations requiring a solver (e.g. the option of multi-
cast tree automatic creation, or some tra�c normalization features in the tra�c design tool). External
algorithms from users, or even built-in examples may have their own solver-related parameters. Re-
garding the solver library names, they are used if, and only if, an algorithm speci�es two solver-related
parameters, solverName (i.e. cplex) and solverLibraryName (i.e. cplex125.dll), and the solver library
name is empty. Otherwise, the non-empty default value for the algorithm will be used by default.

The tabs MatPlanWDM design import �lter and Native SNDLib import �lter are speci�c options
of two plugins of Net2Plan, that permit reading network �les in the old MatPlanWDM format (Mat-
PlanWDM is a MATLAB-based planning tool developed by the author, now discontinued), and in the
SNDLib format (�les in the repository of network topologies http://sndlib.zib.de/).

3.1.2 File → Classpath editor

Although a moderate library set is provided within Net2Plan, users may require extra Java libraries
(.jar �les) to develop their own algorithms or reports (e.g. mathematical or graph theory libraries).
So, the classpath editor (Fig. 3.3) avoids the tedious task of including Java libraries in environment
variables (i.e. CLASSPATH in Windows).

Important : In the current version of Net2Plan Java libraries can be included in run-time, but
unfortunately it is not possible to do the same to remove libraries. In this case, user is forced to restart
Net2Plan.

3.1.3 File → Java error console

This feature centralizes the error handling within Net2Plan. When an error is thrown, for example, due
to invalid input parameters in an algorithm, the error and the stack trace is shown there. Moreover,
System.out/System.err is redirected there also, allowing users to debug their Java code. The console
can be accessed also using the combination ALT+F12.

Important : Due to limitations in Java Virtual Machines, when JNI/JNA for native library access
is used, the native output (i.e. stdout in C/C++) is not equivalent to the Java output, thus such
information will not appear in the Java error console. A workaround is to start the GUI from the
command-line.

23

http://sndlib.zib.de/

Net2Plan 0.4.0 User's manual

Figure 3.4: Java error console.

3.1.4 File → Java error console

Quits Net2Plan.

3.2 O�ine network design

Selecting the submenu Tools → Offline network design (or ALT+1) opens the o�ine network design
tool. This tool is targeted to create a static or o�ine network design, internally represented by NetPlan

object, containing the elements: network nodes, links, unicast and multicast tra�c demands, routes,
protection segments, multicast trees, network layers and SRGs described in Chapter 2. The word o�ine
here means that all the variables in the network plan are supposed to be static (do not change along
time). For instance, o�ered tra�cs are assumed to be constants representing the average tra�c volumes,
although in reality the tra�c can �uctuate around this average according to statistical patterns.

The key functionalities of this tool are:

• Create, load, save and/or manually modify the network designs using the GUI.

• Observe several statistics and performances automatically calculated from the network designs.

• Apply algorithms, that receive the current network design and modify it in any form (e.g. rout-
ing algorithms that receive a design with nodes, links and o�ered tra�c, and add the routing
information to it).

• Apply reports to the current design, which are functions that produce an HTML �le from the
current design.

Fig. 3.5 shows a workspace of the window. Three main areas exist:

• The Network topology panel (top-left area).

• The Warnings panel (bottom-left area).

• The input data, execution and reporting panel (right area).

24

Net2Plan 0.4.0 User's manual

Figure 3.5: Network design window.

3.2.1 Network topology panel

This panel shows graphically the current network design, and permits modifying some parts of it. Users
are able to add or remove nodes and links, zoom out and zoom in (and reset zoom), save a screenshot
of the currently shown topology (in PNG format), and also show/hide the name of the nodes and link
identi�ers, as well as show/hide the non-connected nodes to clarify the display. When a multilayer
design is loaded, a combobox appears to allow users selecting the current layer, as shown in Fig. 3.5.

Some basic topology manipulations are possible in the topology panel:

• Add nodes. Nodes are inserted by right clicking into the canvas and using the option Add node
here.

• Remove nodes. Nodes can be removed by right clicking on them and using the option Remove
node.

• Move nodes. It is possible to move nodes by dragging them, while pressing the CTRL key.

• Add link. Links are inserted by clicking �rst in the origin node and then in the destination node.
It is possible to insert unidirectional links or bidirectional ones (in this latter case, the user must
press SHIFT key during that process). Note that in Net2Plan all the links are unidirectional, and
with bidirectional link we mean the automatic creation of two unidirectional links of opposite
directions. Finally, links can be also inserted by right clicking over the origin node and selecting
the destination node in the popup menu.

The icons at the Network Topology panel permit (left-to-right):

1. Button loads a network design from a .n2p �le. Loaded design becomes the current network
design, previous design is lost.

2. Button loads a .n2p �le, but only extracting the set of o�ered demands from it (ignoring any
other information). The loaded tra�c demands replace the set of demands in the current network
design, and leaves unchanged the rest of the current network design. Typically, the loaded �le
was generated using the Tra�c matrix design functionality. If the number of nodes in the loaded
�le and the current network design are di�erent, the operation is not completed and an error
message is shown.

3. Button saves current design into a .n2p �le.

25

Net2Plan 0.4.0 User's manual

4. Buttons , and make a zoom-in, zoom-out and zoom-all respectively of the shown design.

5. Button allows to take a snapshot of the canvas and save it to a .png �le.

6. Button Node names toggles between showing or not node name.

7. Button Link utilizations toggles between showing or not the link utilizations next to the links
(measured as the total tra�c divided the total capacity, including if any the tra�c and reserved
capacity of the link protection segments).

8. Button Non-connected nodes toggles between showing or not non-connected nodes (those without
input nor output links at the shown layer).

9. Buttons and increase/decrease the node sizes respectively.

10. Buttons and increase/decrease the font sizes respectively.

11. Button Reset erases the current network design, which becomes an empty design.

3.2.2 Warnings panel

In this panel you can see some short messages of warning about the current network design e.g. if node,
link or demand sets are de�ned, if routing is de�ned or not, if all the o�ered tra�c is routed or there
are tra�c losses, and so on. No warning messages means that the current network design has nodes,
links and o�ered tra�c, that is routed without losses in the network, so that no link is oversubscribed
(an oversubscribed link, is the one which is assigned more carried tra�c than its capacity).

3.2.3 View/edit network state tab

The View/edit network state tab (accessible with CTRL+1) shows complete information about the
current network design, including some basic statistics and warnings that permit to visually fast-check
the design and its performances.

Also, this tab permits completing some simple modi�cations in the design, like adding/removing
any element layers, nodes, links, unicast and multicast demands, routes, protection segments, multicast
trees, forwarding rules and SRGs), setting the capacity of links, the o�ered tra�c of demands, or the
carried tra�c of the routes.

The View/edit network state tab is organized into ten or nine sub-tabs, depending on the routing
type of the active layer. Each sub-tab corresponds to each of the elements in the Net2Plan network
representation: Network, Layer, Nodes, Links, Demands, Multicast demands, Routes, Protection
segments, Forwarding rules and Shared-risk groups. When layer routing is source routing the
Forwarding rules sub-tab is hidden. When layer routing is hop-by-hop, the Routes and Protection

segments sub-tabs are hidden. Some general statements applicable to all the sub-tabs:

• In the tables shown, �elds coloured in gray are not editable, since they show information calcu-
lated from other base �elds.

• Right-clicking in the sub-tabs provide fast-access to popup menus with some element-related
speci�c actions.

• Placing the mouse in a column or a �eld shows a help message with detailed information of its
content.

26

Net2Plan 0.4.0 User's manual

Figure 3.6: Network design window. Layer tab.

• Clinking on a column name reorders the table rows according to it (more clicks toggle between
ascending and descending ordering).

A more detailed description of the information in each sub-tab follows.

View/edit network state → Network tab

This tab shows statistical information describing the current network design at a network level (e.g.
see Fig. 3.5).

• Name, Description and Attributes: Shows the network name, description message, and set of
user-de�ned key-value parameters associated to the NetPlan object in the design. Right-clicking
in the Parameters panel permits adding/removing/editing attributes.

• Number of layers, Number of nodes, and Number of SRGs are read-only �elds displaying this
information.

• Layer information: This panel shows basic information about all the layers in the network
such as name, description, link and demand units, attributes, and number of items for each
layer-dependent element (links, demands, and so on). The user can add/remove layers by right
clicking on the table and using the corresponding option.

View/edit network state → Layer tab

This tab shows statistical information describing the current network design at a layer level (see Fig.
3.6).

• Upper part of this tab shows and permits editing the layer name, a layer description mes-
sage, link and capacity units, and the set of user-de�ned key-value parameters associated to the
NetworkLayer element in the design. Right-clicking in the Parameters panel permits adding/re-
moving/editing attributes.

• Routing type. Allows setting the routing type of the layer between source routing and hop-by-hop
routing. Note that users may change between them, and the kernel automatically will translate
a routing into the other one. Source routing can be always translated into hop-by-hop routing.

27

Net2Plan 0.4.0 User's manual

However, the other situation is not always possible. If forwarding rules are de�ned such that
tra�c gets trapped into an open or close loop, their equivalent routes cannot be found.

• Four tables showing network performance metrics associated to the layer are provided. By placing
the mouse over a metric name, a full description is provided. The tables are:

� Topology and link capacities table contain statistics related to the network nodes and links.

� Tra�c table provides statistics regarding the unicast and multicast o�ered and blocked
tra�c.

� Routing table provides information regarding the routing, like the average number of hops,
symmetry, bifurcation, or existence of loops.

� Resilience information table is only active when the routing is of the source-routing type.
It provides information regarding the protection segments de�ned.

View/edit network state → Nodes tab

This sub-tab shows the information related to network nodes. Clicking on each node highlights it in
the left panel.

It is possible to show/hide a node and setting them as up/down. The up/down option allows users
to play with the network to see the e�ect, in terms of tra�c losses, of a failure. We would like to
remark, that when setting up/down a node the standard Net2Plan reaction described in Section 2.10
is applied (and not any user-de�ned recovery mechanism).

View/edit network state → Links tab

This sub-tab shows the information related to network links. Clicking on each link highlights it in the
left panel.

Similarly to the nodes, it is possible to show/hide a link and setting it as up/down. The behavior
of Net2Plan in both cases is analogous to that with the nodes.

View/edit network state → Demands tab

This sub-tab shows the information related to tra�c demands. Clicking on each demand highlights its
associated ingress and egress nodes in the left panel, and all the links in the network carrying tra�c
of the demand.

View/edit network state → Multicast demands tab

This sub-tab shows the information related to multicast tra�c demands. Clicking on each demand
highlights its associated ingress and set of egress nodes in the left panel, and all the links in the network
carrying tra�c of the demand.

View/edit network state → Routes tab

This sub-tab appears only if the layer routing is of the source-routing type. It shows the information
related to the routes de�ned. Clicking on each route highlights its traversed links in blue, and the links

28

Net2Plan 0.4.0 User's manual

belonging to any protection segment which is an eligible backup to the route, are shown in yellow. If
the route traverses a protection segment, these links are shown in orange.

View/edit network state → Multicast trees tab

This sub-tab shows the information related to the multicast trees de�ned. Clicking on each tree
highlights its traversed links in blue.

View/edit network state → Protection segments tab

This sub-tab appears only if the layer routing is of the source-routing type. It shows the information
related to the protection segments de�ned. Clicking on each segment highlights its associated links.

View/edit network state → Forwarding rules tab

This sub-tab appears only if the layer routing is of the hop-by-hop type. It shows all the forwarding
rules de�ned in the network layer. Clicking on each forwarding rule highlights the associated demand
ingress and egress nodes, and the link.

View/edit network state → Shared-risk groups tab

This sub-tab shows the information related to the SRGs de�ned. Clicking on each SRG highlights its
associated links and/or nodes (the ones that simultaneously fail when the SRG fail).

3.2.4 Algorithm execution tab

This panel (accessible also from CTRL+2) permits the users executing network design algorithms that
receive as an input (i) the current network design, (ii) a set of algorithm-de�ned parameters, and (iii)
Net2Plan-wide parameters, and produce as an output a new network design that becomes the current
one, and an output message string. Fig. 3.7 shows an example.

To execute an algorithm, users should specify the Java class (implementing the IAlgorithm inter-
face) containing the network design algorithm. A .class �le can be selected using the Load button.
In addition, a .jar �le can be also selected. In that case, the pull-down menu below permits selecting
one among the .class �les in the .jar, that implement the IAlgorithm interface.

Once an algorithm is selected, the Description text �eld shows the algorithm description as
returned by the getDescription() method of the algorithm. The Parameters panel shows the set
of input parameters of the algorithm. Net2Plan invokes the algorithm getParameters() method to
obtain the list of input parameters, with a name, a default value and a description message for each.
This information is displayed in the Parameters panel. Then, the graphical interface allows the user
modifying the value of any parameter before running the algorithm.

The algorithm is executed pressing the Execute button. At this moment, Net2Plan invokes the
executeAlgorithm() method of the algorithm, passing as inputs the current network design, the
values of the input parameters (as String objects, any parsing should be done by the algorithm), and
the current values of the Net2Plan-wide parameters (see Section 3.1.1). The executeAlgorithm()

method returns a NetPlan object that becomes the current network design. If the method raises a

29

Net2Plan 0.4.0 User's manual

Figure 3.7: Algorithm execution tab.

Net2PlanException, it is shown in the window. If the method raises any other Exception, the stack
trace is printed in the Java console for helping the users to debug their algorithms. In either case, if
the executeAlgorithm() raises any exception, the current design is unchanged, whatever changes to
it were made in the algorithm before the exception was raised.

To see more information about how to develop user-made o�ine network design algorithms see the
Chapter 5.

Important : In multilayer networks, the default layer of the NetPlan object passed to the algorithm
is the one shown in the network topology panel when the Execute button is pressed.

3.2.5 View reports tab

In this panel (accessible from CTRL+3) users can select a report to apply to the network plan. The
structure is similar to that for executing algorithms.

To run a report, users should specify the Java class (implementing the IReport interface) containing
the report code. A .class �le can be selected using the Load button. In addition, a .jar �le can be
also selected. In that case, the pull-down menu below permits selecting one among the .class �les in
the .jar, that implement the IReport interface.

Once a report is selected, the Description text �eld shows the report description as returned by the
getDescription() method of the report. The Parameters panel shows the set of input parameters of
the report. Net2Plan invokes the getParameters() method which returns the list of input parameters,
with a name, a default value, and a description message for each. This information is displayed in
the Parameters panel. Then, the graphical interface permits the user modifying the value of any
parameter before running the report.

The report is executed pressing the Show button. At this moment, Net2Plan invokes the report
executeReport() method, passing as inputs the current network design, the values of the input pa-
rameters (as String objects, any parsing should be done by the algorithm), and the current values of
the Net2Plan-wide parameters (see Section 3.1.1). The executeReport() method returns a String,
which is interpreted as an HTML �le, and shown in the tabs in the lower part of the tab.

Users can see a report in a browser using the option View in navigator, or even saving it to an
external HTML �le.

Reports can be closed individually using the CTRL+W combination.

30

Net2Plan 0.4.0 User's manual

Figure 3.8: View reports tab.

3.3 Tra�c matrix design

As stated in Chapter 2, network design contains a set of unicast tra�c demands, representing the
unicast o�ered tra�c in the network. Each demand is characterized by an ingress and egress node,
and a tra�c volume representing an average of the demand tra�c load. In occasions, the set of tra�c
demands is composed of one demand for each node pair. That is, there are no two tra�c demands
with the same ingress and egress nodes. In these cases, it is possible to represent the demand set using
a compact matrix representation, so-called tra�c matrix. A tra�c matrix for a network of N nodes
is a N ×N matrix with zeros in the diagonal. The coordinate in the i-th row and j-th column of the
matrix, contains the amount of tra�c generated in node i that is targeted to node j. In other words,
the tra�c volume of the demand associated with the (i, j) node pair.

The tra�c matrix design tool assists users in the process of generating user-de�ned tra�c matrices.
It permits generating new matrices manually, or following several models found in the literature (e.g.
random-uniform, population-distance models...). Created matrices can be saved in .n2p format to be
further applied in Net2Plan. In addition, some popular tra�c matrix generation models are available
in the Net2Plan library and thus can be directly integrated into Java-based design algorithms. For
more information, see the class TrafficMatrixGenerationModels in the Javadoc.

Selecting Traffic matrix design under Tools menu (or using ALT+2) activates the Tra�c matrix
design window. Fig. 3.9 displays the workspace window for this option. The upper part of the left
panel gives access to a set of general tra�c generation models. Below, the user can generate matrices
using one particular method: the population-distance tra�c model. The right panel shows the tra�c
matrices generated, and permits saving (as .n2p), loading (as .n2p), resizing the matrices and some
other simple modi�cations in the buttons above the matrices. In the lower right side, the tra�c
normalization panel permits applying a normalization method to one or all of the tra�c matrices in
the upper panel. The panel below, permits selecting a method for producing a set of tra�c matrices
from a seminal one, in di�erent forms.

3.3.1 Tra�c generation: general tra�c models

In this panel, the user can generate one or a batch of tra�c matrices, selecting one of the following
tra�c generation patterns:

• Constant. Generates a tra�c matrix with a given constant value in all its coordinates.

31

Net2Plan 0.4.0 User's manual

Figure 3.9: Tra�c matrix design panel tab.

• Uniform (0,10). Generates a tra�c matrix with random values in the range (0,10) .

• Uniform (0,100). Generates a tra�c matrix with random values in the range (0,100).

• 50% Uniform (0,10) & 50% Uniform (0,100). Generates a tra�c matrix with 50% of its entries
with random values in the range (0,100), and the rest of the entries with random values in the
range (0,10).

• 25% Uniform (0,10) & 75% Uniform (0,100). Generates a tra�c matrix with 25% of its entries
with random values in the range (0,100), and the rest of the entries with random values in the
range (0,10) .

• Gravity model : Generates a tra�c matrix according to the gravity model. The user should
provide for each node n, its total tra�c generated OUT (n) and received IN(n). Naturally, the
sum of all the tra�c generated by all the nodes should be equal to the sum of the tra�c received
by all the nodes (we denote it as H). From this information, the coordinate (i, j) of the tra�c
matrix is given by OUT (i)IN(j)H . Then, the tra�c from node i to node j is proportional to
the total tra�c produced at i and proportional to the total tra�c received at j.

In any method, diagonal values of the tra�c matrix are always zero, since self-demands are not
allowed. Pressing the Apply button, one tra�c matrix is created, and shown in the right panel. In its
turn, the Apply batch button permits creating an arbitrary number of matrices, which are also shown
in the right panel.

3.3.2 Tra�c generation: population-distance tra�c model

In this panel, the user can generate one or a batch of tra�c matrices, using the population-distance
tra�c matrix model described in [2]. This model receives as an input the number of nodes in the
network, and for each node, its (X,Y) position, its population and a factor called node level. This
information can be introduced manually in the Topology information panel, or loaded from a .n2p

�le, where the nodes have the population and level attribute de�ned.

In the population-distance model, the tra�c γij from node i to node j is calculated following the
expression:

γij = (1− rf + 2× rf × rand())× Level(Li, Lj)×

(
PopiPopj
Pop2max

+ Popoff

)Poppower

(
distij

distmax
+ distoff

)distpower

32

Net2Plan 0.4.0 User's manual

Figure 3.10: Tra�c matrix design panel tab. Population-distance model.

This expression is explained in the following points:

• Random factor (1− rf + 2× rf × rand()): rand(), is a sample of a uniform (0,1) distribution,
and rf ∈ [0, 1] is a method parameter controlling the randomicity, since expression (1− rf + 2× rf × rand())
is a uniform sample in the interval [1 − rf, 1 + rf]. Then, if rf = 0, there is no randomicity
(the sample is always one), if rf = 1, the randomicity is maximum, since the random becomes a
uniform sample in the range (0, 2).

• Node level factor Level(Li, Lj). This factor permits multiplying the tra�c between two nodes
by a constant dependent on the level of each node. The Level(Li, Lj) values are de�ned in a
L × L matrix (being L the number of levels or node types de�ned by the user). For instance,
imagine we have a network with two types of nodes, clients and servers. We want to create a
tra�c matrix for this network where clients do not send tra�c to clients, and servers do not
send tra�c to servers. This can be done de�ning two node levels in the network for separating
client nodes and server nodes. Then, we can use a level matrix with 0s in the diagonals, so the
client-client tra�c and server-server tra�c is multiplied by 0 in the model.

• Population factor
(
PopiPopj
Pop2max

+ Popoff

)Poppower

. The population factor makes the tra�c between

two nodes proportional to the product of the population of both nodes normalized by the maxi-
mum node population Pop2max . The factor Popoff is used to smooth the e�ects of the product
(e.g. if a population is 0, the tra�c is still not zero). The Poppower factor controls the e�ect of
the population in the matrices. Typical values are:

� Poppower = 1 in models based on so-called gravitation attraction.

� Poppower = 0 if site tra�c is independent of the population.

• Distance factor
(

distij
distmax

+ distoff

)distpower

. The distance factor makes the tra�c between two

nodes inversely proportional to the distance between them. The distoff , distmax and distpower

values have a similar function as in the population factor. Typical values are distpower = 2 or 3.

• Note that the population and/or distance normalization factors can be disabled. In such cases,
the factors distmax and popmax are set to one.

Pressing the Apply button, one tra�c matrix is created, and shown in the right panel. In its turn,
the Apply batch button permits creating an arbitrary number of matrices, which are also shown in
the right panel.

33

Net2Plan 0.4.0 User's manual

3.3.3 Manual matrix introduction/edition

The right panel shows the tra�c matrices generated by any of the previous models, in di�erent tabs
numbered as TM0, TM1... The user can manually modify the matrices directly typing the coordinate
values. The Resize this button permits resizing (changing the number of nodes) of the tra�c matrix
in the active tab. The Resize all button permits resizing all of them in one step. The Load button
permits loading a tra�c matrix from a .n2p �le. The buttons Save this and Save all permits saving the
tra�c matrix in the active tab, or all the tra�c matrices in .n2p �les. The buttons Make symmetric
this and Make symmetric all produce symmetric matrices. The tra�c between two nodes becomes
the average between the tra�c in both directions. The buttons Reset this and Reset all sets 0s in all
the coordinates of active/all matrices. The button Clear all eliminates all the matrices. The button
Sum all adds a new tra�c matrix to the panel, which is the sum of all the tra�c matrices shown (all
of them must have the same number of nodes). The buttons Multiply this and Multiply all permits
multiplying all the coordinates of this/all matrices by a constant factor.

3.3.4 Tra�c normalization

The tra�c normalization pull-down menu in the lower-right side of the window, permits selecting a
normalization method to apply to the tra�c matrix in the active tab (button Apply) or to all the
tra�c matrices (button Apply all). Four types of normalization methods are implemented: total, row
and column normalization [2]:

• Total normalization. The target of total normalization, is modifying a tra�c matrix M , so that
in the normalized matrix M ′ , the total amount of tra�c generated equals a user-de�ned value
S. This is done by multiplying all the elements of the original tra�c matrix by a constant factor
according to the expression:

M ′
ij =Mij

S∑
ij Mij

• Row normalization. The target of row normalization, is modifying a tra�c matrix M , so that
in the normalized matrix M ′, the total amount of tra�c generated by each node i, equals a
user-de�ned value Si . This is done by multiplying all the elements in the i-th row of the original
tra�c matrix by the same constant factor according to the expression:

M ′
ij =Mij

Si∑
j Mij

• Column normalization. The target of column normalization, is modifying a tra�c matrix M , so
that in the normalized matrix M ′, the total amount of tra�c received by each node j, equals
a user-de�ned value Sj . This is done by multiplying all the elements in the j-th column of the
original tra�c matrix by the same constant factor according to the expression:

M ′
ij =Mij

Sj∑
iMij

• Normalize to the maximum tra�c that can be carried. The target is to multiply the tra�c matrix
M by the maximum factor α so that the matrix αM can still be carried by a given network
using the optimum routing (without oversubscribing the links). The user can choose between
two forms of calculating this: an estimated method, and an exact method:

� Estimated method. This method actually produces a matrix which is an upper bound to
the maximum tra�c that an optimal routing could carry. For each input/output pair in

34

Net2Plan 0.4.0 User's manual

the network (i, j), it calculates the number of hops that the shortest path (either in hops
or in km) between those nodes has SPij . For each node pair (i, j), the quantity αMijSPij

is the minimum possible amount of link bandwidth that the tra�c between those nodes
could consume in any routing. Then, the normalized matrix αM is such that the sum of
this quantity along all the coordinates, equals the total amount of bandwidth summing the
links in the network

∑
e ue (where ue stands for the capacity of link e). In other words:

α =

∑
ij MijSPij∑

e ue

For further details, see Exercise 4.2 in [1].

� Exact method. This method solves the linear program that exactly computes the maximum
factor α for which the matrix αM still has a feasible routing in the network. The formulation
is solved using the JOM library. The solver used and its .DLL/.so location is obtained from
the default values in the Options menu (see Section 3.1.1).

3.3.5 Creating a set of tra�c matrices from a seminal one

In some occasions, network design studies require a set of tra�c matrices, instead of a single one. For
instance, when we need to produce a sequence of tra�c matrices that re�ect the forecasted tra�c in
following years, according to a expected tra�c growth (this is called multi-period planning). Also, it
may be necessary to produce random variations of a single tra�c matrix, to check how the network
performances vary if the tra�c �uctuates. For this or other purposes, Net2Plan o�ers the following
methods:

• New matrices with a compound annual growth rate. A sequence of tra�c matrices is created,
representing one for each of the incoming years, being the seminal matrix the tra�c today. Each
matrix is equal to the matrix of the previous year, multiplied by a factor (1 + CAGR) , where
CAGR is the Compound Annual Growth Rate.

• Uniform random variations. A set of matrices is created from a seminal one. For each new
matrix, each coordinate is given by a sample of a uniform random variable with average x (the
coordinate value in the seminal matrix), and a user-de�ned maximum relative variation (in the
range [0, 1]). For instance, a value 0.2 of the maximum relative variation means that the new
coordinate is taken uniformly between (1− 0.2)x and (1 + 0.2)x.

• Gaussian random variations. A set of matrices is created from a seminal one. For each new
matrix, each coordinate is given by a sample of a gaussian random variable, with average x
(the coordinate value in the seminal matrix), and a user-de�ned coe�cient of variation (quotient
between standard deviation and average), and a user-de�ned maximum relative variation. This
latter value is used to truncate the sample. For instance, a value 0.2 of the maximum relative
variation means that if the sample is below (1− 0.2)x then the value (1− 0.2)x is produced, and
if the sample is greater than (1 + 0.2)x, the value (1 + 0.2)x is produced.

In any method, if negative values in the coordinates appear, they are set to 0.

3.4 Online network simulation

In a real-world environment, network conditions vary during its operation, according to di�erent phe-
nomena. Failures in nodes and links, establishment of new virtual circuits, or variation in tra�c

35

Net2Plan 0.4.0 User's manual

volumes are some examples. In this case, users could be interested in analyzing, using an event-driven
simulation, how their networks react to those changes and how their designs are consequently adapted
for them.

Net2Plan provides a post-analysis simulation tool that allows to the user the (joint) evaluation of
the availability performance of protection and restoration algorithms in the network, the performance
of on-line provisioning schemes that allocate resources to incoming connections (e.g. virtual circuits
requests, lightpath requests, phone calls, multimedia sessions), the performance of dynamic allocation
algorithms which react to variations in tra�c demand volumes, or in general any allocations during
network operation. Allocation is not only referred to modify tra�c routing, but also it means that the
network topology may change along time (e.g. adding new links, updating the link capacities...) for
adapting to the new tra�c condition.

3.4.1 The event driven simulation framework

The architecture of the simulator is based on the well-known discrete-event simulation paradigm. The
network operation is modeled as a discrete sequence of events in time. Each event occurs at a particular
time instant and marks a change of state in the system. Between consecutive events, no change in the
network occurs; thus the simulation can directly jump in time from one event to the next.

Event generator and event processor modules

An online simulation is governed by two objects in Net2Plan. For both, the user can develop its own
algorithm, or use a built-in one:

• Event generator. The event generator is an object implementing the interface IEventGenerator.
Its typical use is implementing the code that generates the external events that the network is
going to react to: e.g. tra�c variations, failure/repairs. Event generators can send and receive
events, but cannot change the current state of the network, represented by a NetPlan object.

Example. The built-in class Online_evGen_generalGenerator, implements a generator which
can produce fast tra�c variations mixed or not with slow (multi-hour) tra�c variations
and/or failure/repair events in the network.

• Event processor. The event processor is an object implementing the interface IEventProcessor. Its
typical use is consuming the events produced by the event generator, implementing the particular
form in which the network state will change. Then, when consuming an event, the event processor
will receive from the kernel the event to react to, and the current network state as a NetPlan

object, and should return the network reaction by modifying the given NetPlan object, which
will become the new network state.

Example. The built-in class Online_evProc_generalProcessor, implements a processor which
allows the user to choose among some allocation schemes to react to the events created by
the Online_evGen_generalGenerator module.

The SimEvent object

Both event generator and processor can send events to themselves and to the other module. Their
di�erence is mainly that event generators cannot modify the current network state.

36

Net2Plan 0.4.0 User's manual

An event is an object implementing the interface SimEvent, which at least contains the event time,
event priority (for ordering the simultaneous events among them) the destination module (generator
or processor), and any Object containing speci�c information of the event.

Some built-in classes extending SimEvent exist, that are used by the built-in algorithms provided as
examples in the Net2Plan repository. These are basic events like events to add/remove tra�c demands,
or to signal a change in the up/down state (fail/repair) of nodes and links.

The user can implement their own SimEvent classes, or use these ones. The full list of classes
implemented can be seen in the Javadoc, as public classes inside SimEvent.

The simulation cycle

The Net2Plan kernel is in charge of governing the simulation. The complete process is described below:

1. The user loads the event generator and event processor modules. The kernel prints the description
of each module and their lists of input parameters by calling the methods getDescription and
getParameters.

2. The user can set the values of the input parameters in the GUI. Also, can set some simulation
wide parameters (not algorithm dependent) like the simulation duration, transitory time or how
some internal kernel statistics should be computed.

3. The user starts the simulation pressing the Run button. The NetPlan object corresponding to
the network design in the topology panel becomes the current network state. The kernel calls the
initialize method of the event generator, and the event processor. It passes them the current
network state (the event generator cannot modify it), and the parameters. Any initialization
routines that these modules need should be coded there. Also, at least one of these methods
should produce events using the scheduleEvent method. If not, there will be no events to
consume, and the simulation will end.

4. The Net2Plan kernel handles the simulation loop. It keeps a list of future events to consume
(FEL, Future Event List), ordered according to the global simulation clock (which initially started
in zero), and repeats the event scheduling loop:

• Advance the clock to the time of the �rst event in the list (the one with the lowest time,
using the event priority to order among simultaneous events).

• Call the processEvent method of the event destination module (generator or processor),
passing to it the event to consume, and the current network state. Both event generator
or processor can produce new events (only with a time equal or higher than the current
simulation time). However, only the event processor can call the methods in the NetPlan

object of the current state that modify it. A UnsupportedOperationException is raised if
they are called in the event generator.

5. In the event scheduling loop, when the clock reaches the time con�gured as transitory time in the
simulation-wide parameters, the kernel calls the method finishTransitory of both event gen-
erator and event processor. Typically, these methods reset any internal variables for computing
statistics that they may have. Also the kernel computed statistics are reset. The event generator
or event processor can also force the kernel to call the finishTransitory methods and reset the
kernel statistics, by invoking the method endTransitory.

6. In the event scheduling loop, when the clock reaches the time con�gured as simulation end time
in the simulation-wide parameters, the kernel calls the method finish of both event generator
and event processor. These methods return a String, which is later printed by Net2Plan in

37

Net2Plan 0.4.0 User's manual

Figure 3.11: Online simulation tool. Execution controller panel.

the simulation report. Then, finish methods typically return a short report with any internal
statistics computed. The event generator or event processor can also force the kernel to end the
simulation and call the finish methods, by invoking the method endSimulation.

Simulation statistics

Two types of statistics are collected during the simulation, and then printed in the �nal report:

• Net2Plan general statistics. If the disableStatistics option is not set, Net2Plan computes a
complete set of statistic on the simulation evolution. They are technology-agnostic statistics like
the blocked tra�c (observing the demands o�ered and carried tra�cs), average link occupations,
etc.

• Event generator or event processor internal statistics. Typically, these modules can collect and
then return in the finish method algorithm-speci�c statistics.

3.4.2 Graphical User Interface

Selecting Online simulation (also from ALT+3) opens the corresponding window of the online simulation
tool. The workspace of the window is divided into three areas, in a similar way to the network
design mode: network topology visualization (top-left area), execution and reporting (right area), and
simulation controller and information area (bottom-left area). Fig. 3.11 shows an example of this
screen. Next subsections describe the main panels.

Network topology panel

The Network Topology panel is the same as in the o�ine network design tool. The only di�erence is
that the network cannot be edited (e.g. add/remove node). To do so, the O�ine Network Design tool
must be used.

Typically, to perform a simulation, a network design is loaded and becomes the initial network
state. During the simulation, changes in the topology (e.g. failed nodes and/or links) are shown in the
canvas.

38

Net2Plan 0.4.0 User's manual

Figure 3.12: Online network design.

View network state tab

In the View network state tab (accessible also from CTRL+1), users can see information related to the
network state. Optionally, using the checkbox Toggle show/hide planning information, users can also
see the same information as it was in the initial network design before running the simulation, for
comparisons.

The following code color is used to highlight the network state regarding to the routes (see Fig.
3.12):

• In the route table, the routes which do not carry tra�c (could not be recovered) are printed in
red. The ones that follow a di�erent sequence of links than at the start of the simulation (and it
is likely that were rerouted to survive a failure), are printed in yellow.

• In the canvas, the failing links are in red. The currently traversed links of a route are printed
in blue, or in orange if the traversed links belong to a protection segment. Finally, the links
belonging to protection segments available to the route, but not currently traversed by it are
printed in yellow.

• If the initial information is used as comparison, the traversed links and usable protection segments
of the route are printed like in the current network state, but using dashed lines.

Execution controller

With this panel, users are able to execute simulations and view the current state of the network. In
the Execution controller (accessible also from CTRL+2), users can load network designs and execute
simulations. To execute a simulation the user should specify the following parameters:

• Simulation parameters: general parameters for the simulation.

� disableStatistics. In some occasions, users might be interested in collecting only their
own statistics, and would prefer avoiding the overhead that requires statistics collection by
the kernel. This can be done with this parameter.

� omitProtectionSegments. As stated in Section 2.7.3, protection segments reserve a certain
amount of bandwidth to provide (partial) backup-paths for primary routes. However, in
some situations, users might be interested in executing their simulations assuming that no

39

Net2Plan 0.4.0 User's manual

protection segments are de�ned. If this parameter is set to true, then protection segments
are removed from the network plan just before the simulation starts, and their bandwidth
in the links is available for carrying common routed tra�c.

� refreshTime. If the option Refresh has been activated in the simulation controller panel,
information about the current simulation, (number of processed events, simulation and CPU
time...) will be shown there. This information is refreshed every number of seconds given
by this parameter

� simEvents. Total number of events (including transitory events) to be simulated. If the pa-
rameter simTime is also speci�ed, the simulation will automatically �nish when the �rst stop-
ping condition is met. Allowed values are integers greater than zero, or -1 for no limit (sim-
ulation must be manually stopped, or stopped by the algorithm calling the endSimulation
method).

� simTime. Total simulation time (including transitory events) in seconds. If the parameter
simEvents is also speci�ed, the simulation will automatically �nish when the �rst stopping
condition is met. Allowed values are numbers greater than zero, or -1 for no limit (simulation
must be manually stopped).

� transitoryEvents. Number of events for the transitory period. If transitoryTime is also
speci�ed, the transitory period will �nish when the �rst condition is met. Allowed values
are integers grater than 0, or -1 for no transitory period.

� transitoryTime. Transitory time in seconds. If transitoryEvents is also speci�ed, the
transitory period will �nish when the condition is met. Allowed values are integers greater
than 0, or -1 for no transitory period.

• Event generator. the event generator algorithm, as a Java class extending the IEventGenerator
class. A description of the algorithm will be shown in this panel as well as any input parameter
that may be modi�ed by the user.

• Provisioning algorithm. The event processor algorithm, as a Java class extending the
IEventProcessor class. A description of the algorithm will be shown in this panel as well as any
input parameter that may be modi�ed by the user.

During the simulation, users are able to save the NetPlan object collecting the current network
state using the corresponding button in the network topology view.

Important : Once the simulation is started, none of the above options can be changed. Users should
stop and reset the simulation (clicking the Reset button) to perform changes.

Simulation controller

In this panel users can control the execution and �ow of the simulation. Several buttons can be
manipulated here:

• Run. This button will start the simulation. Information about the current simulation will be
shown in the text panel (the refresh time is de�ned by the refreshTim parameter). If a previous
simulation has already been started it must be stopped and reset before starting a new one.

• Step. Instead of running continuously, the simulation can be advanced in steps. Each time the
Step button is clicked the simulation will consume one event of the future event list, and then
pause and refresh the text panel.

• Pause/Continue. The simulation will be paused or resumed each time this button is clicked. A
simulation must be started in order for this button to work.

40

Net2Plan 0.4.0 User's manual

Figure 3.13: Online network design. Future event list

Figure 3.14: Online network design. Simulation report

• Stop. Users can stop the simulation at any time, but then the simulation cannot continue.

• Refresh. The information in the text panel will be refreshed if this check-box is activated.

• View FEL: Clicking this option will show the Future Event List, where users can examine the
future events to be processed by the provisioning algorithm (see Fig. 3.13)

Also, the text panel shows some brief simulation state information: simulation time, CPU time,
last event processed... This information is updated according to the refresh time parameter.

Simulation report

In this panel (accessible also from CTRL+3), users can obtain the statistics collected by the kernel, and
also those collected by their algorithms (event generator and event processor). Users can see the report
at any moment (clicking the Update button) while the simulation is running, paused or stopped, and
can be opened by a web browser, as happened with the reports for network designs.

In some occasions, users might be interested in collecting only their own statistics, and they might
want to eliminate the overhead that requires statistics collection. This can be done by checking the
simulation parameter disableStatistics. In this case, only algorithm-speci�c statistics are shown.

Net2Plan statistics include di�erent network-wide, per-layer, per-node, per-link and per-demand
information. Fig. 3.14 shows an example.

View reports

This panel (accessible also from CTRL+4) o�ers the same functionality as the reporting tool in the o�ine
network design tool. Users can select a report to apply to the current network state. Upon selection

41

Net2Plan 0.4.0 User's manual

Figure 3.15: Key combinations for the o�ine network design tool.

and clicking Show the report is shown in the bottom panel. Again, reports can be opened by a web
browser using the option View in navigator.

3.5 Help menu

This menu has the following options:

• About. Gives access to the same welcome screen as the one shown in Fig. 3.1.

• User's guide. Shows the local copy of this document. It can be accessed also using F1.

• Library API Javadoc. Shows the local copy of the library API Javadoc.

• Examples in website. Shows the examples available in the website (requires an Internet con-
nection).

• Key combinations. Shows the key combinations or shortcuts of the active tool (if any). For
example, the key combinations for the o�ine network design tool are shown in Fig. 3.15. Key
combinations can also be accessed with ALT+K

42

Chapter 4

The Net2Plan Command-Line Interface
(CLI)

Contrary to the GUI, the command-line interface allows users to make use of batch processing or
large-scale simulation features, thus it is speci�cally devoted to in-depth research studies.

All features available for GUI mode are also available here. The execution is controlled via
command-line arguments. To run Net2Plan in CLI mode, users must execute the following command
in a terminal:

java -jar Net2Plan-cli.jar [more options]

Help information can be obtained through the help argument in the following ways:

• To obtain a brief information, including only the execution modes, users should execute the CLI
without arguments: java -jar Net2Plan-cli.jar

• To obtain the complete information, including individual help for every execution mode, users
should type: java -jar Net2Plan-cli.jar �help.

• To obtain the information about a certain execution mode, users should type: java -jar

Net2Plan-cli.jar �help mode-name

Next, the command to execute every mode is shown:

• Network design. java -jar Net2Plan-cli.jar �mode net-design [more options]

• Tra�c matrix design. java -jar Net2Plan-cli.jar �mode traffic-design [more options]

• Online simulation. java -jar Net2Plan-cli.jar �mode online-sim [more options]

• Reporting. java -jar Net2Plan-cli.jar �mode report [more options]

4.1 Examples

We show here some examples:

• To execute the MyAlgorithm algorithm in the Jar �le myFolder\myJar for the NSFNet network
and its reference tra�c matrix, setting the parameter myParam to the value 3:

43

Net2Plan 0.4.0 User's manual

java -jar Net2Plan-cli.jar --mode net-design

--input-file workspace\data\networkTopologies\NSFNet_N14_E42.n2p

--traffic-file workspace\data\trafficMatrices\NSFNet.n2p

--output-file workspace\data\NSFNet.n2p

--class-file myFolder\mJar.jar

--class-name MyAlgorithm

--alg-param myParam=3

• To execute the built-in availability report over the previous design:

java -jar Net2Plan-cli.jar --mode report

--input-file workspace\data\NSFNet.n2p

--output-file workspace\data\report.html

--class-file workspace\BuiltInExamples.jar

--class-name Report_availability

• To generate a series of 4 10× 10 tra�c matrices using a (0, 100) random uniform model:

java -jar Net2Plan-cli.jar --mode traffic-design

--num-nodes 10

--traffic-pattern uniform-random-100

--output-file workspace\data\trafficMatrices\tm10nodes.n2p

--num-matrices 4

• To execute a simulation using myEventGenerator and myEventProcessor classes in myFolder\myJar
�le:

java -jar Net2Plan-cli.jar --mode online-sim

--input-file workspace\data\networkTopologies\NSFNet_N14_E42_complete.n2p

--output-file workspace\data\simReport.html

--generator-class-file myFolder.myJar.jar

--processor-class-file myFolder.myJar.jar

--generator-class-name myEventGenerator

--processor-class-name myEventProcessor

--sim-param simEvents=100000

--sim-param transitoryEvents=10000

Important : To avoid excessive verbosity in the CLI, package names for Java classes can be omitted.
Note that in case of .jar �les the �rst class matching the class name will be selected, if multiple cases
in di�erent packages share the same class name.

Important : Restrictions to the path of .class �les must follow the guidelines in Chapter 5.

44

Chapter 5

Development of algorithms and reports in
Net2Plan

One of the most important features of Net2Plan is that it allows users to execute their own code
(algorithms, reports... in general we refer to them as runnable code). Here, we brie�y describe how to
integrate users' code into Net2Plan.

Runnable code is implemented as Java classes, using single .class �les or integrated into .jar

�les, with a given signature:

• Algorithms for o�ine network design should implement the interface
com.net2plan.interfaces.networkDesign.IAlgorithm

• Reports should implement the interface com.net2plan.interfaces.networkDesign.IReport

• Online algorithms that process network events, used in the online simulation tool and some re-
ports, should implement the interface com.net2plan.interfaces.simulation.IEventProcessor

• Modules that generate events to be consumed by online algorithms should implement the interface
com.net2plan.interfaces.simulation.IEventGenerator.

A complete information of each interface can be found in the Library API Javadoc. Integration
of runnable code simply requires saving it into any directory of the computer, although it is a good
practice to store them in the workspace directory of Net2Plan.

In addition, in order to improve the user experience, the kernel is able to catch any exception thrown
by runnable code, and print exception messages in the Java console. Recall that any information printed
to the Java console by any runnable code (e.g., exception messages, and also any messages printed
on purpose into System.out) , can be seen in the Net2Plan Java console (see Section 3.1.3). This
is a valuable resource for debugging the algorithms ran in Net2Plan. In particular, messages from
exceptions include a full trace of the error (�les, line number of the exception...).

When the runnable code wants to stop its execution raising an exception that needs to be in-
formed to the user in a more clear form (not through the Java console), we recommend to throw the
Net2PlanException class (see Library API Javadoc for more information). The message associated to
this exception is printed in a pop-up dialog instead of the Java console, and thus is more visible to the
user. For instance, let us assume an algorithm that receives an input parameter from the user, that
should be positive. A good programming practice is starting the algorithm checking if the received
parameters are within their valid ranges. If a negative number is received (or something that is not a

45

Net2Plan 0.4.0 User's manual

number), it is better to raise a Net2PlanException that shows the information message in a pop-up in
Net2Plan, than a general Java RuntimeException whose message can be read only if the user checks
the Java console.

Important : When runnable code is implemented as a Java .class �les, the full path to the class
must follow the package name of the class, in order to successfully load the code. For example, if we
create an algorithm named TestAlgorithm in the package test.myAlgorithms, the full path to the
class must be like ...any.../test/myAlgorithms/TestAlgorithm.class. For .jar �les there is not
any restriction on the full path, they can be stored at any folder.

Important : Net2Plan allows to make online changes in the runnable code, that is, users can modify
their runnable code, recompile and reexecute it (just clicking the Execute button at the graphical
interface) without the need to restart Net2Plan.

5.1 Net2Plan Library, Built-in Examples and Code Repository

Net2Plan assists the task of creating and evaluating algorithms by providing built-in example algo-
rithms and a set of libraries (e.g., k-loopless shortest paths, candidate path list creation for unicast
and multicast tra�c...). An exhaustive list of built-in algorithms and the Library API Javadoc can
be found in Net2Plan repository and in the Javadoc. Net2Plan web site is expected to become a
valuable repository for network planning algorithms. The algorithms in the repository will be open for
validation and veri�cation, improving the trustworthiness of planning results.

5.2 JOM: Java Optimization Modeler

Often, some network design problems are solved by modeling them as optimization problems (i.e.
integer linear problems, linear problems, convex problems, ...), and then calling an optimization solver
to obtain its numerical solution. In this context, optimization modeling tools are targeted to ease
the de�nition of the problem decision variables, constraints and objective function, and become an
interface with the (usually complex) solver libraries. AMPL and GAMS are examples of commercial
modeling tools. JOM (Java Optimization Modeler) is an open-source Java library developed by Prof.
Pablo Pavón Mariño, which can interface with a number of solvers using a vectorial MATLAB-like
syntax, which e.g. permits the addition of sets of constraints in one line of code. Current JOM version
can interface with GPLK (free) and CPLEX (commercial) solvers for mixed integer linear problems,
and IPOPT (free) for non-linear di�erentiable problems. JOM directly interfaces with compiled solver
libraries (.DLLs in Windows and .SOs in Linux), via Java Native Access (JNA). JOM is independent
from Net2Plan and can be used for any type of optimization problem. However, Net2Plan uses JOM
in all the network design algorithm examples based on solving formulations that are included in the
Net2Plan distribution.

5.3 Preparing a Java IDE for Net2Plan programming

For users interested in integrating their own algorithms to Net2Plan, it is required to prepare the Java
IDE to program the runnable code. Essentially, users just have to con�gure their preferred Java IDE
to use Java 7 (or later), and to include the libraries in the lib subfolder of the Net2Plan folder in the
Java build-path. In Eclipse, the latter can be done in the option:

Project => Properties => Java Build Path => Libraries => Add External JARs...

46

Net2Plan 0.4.0 User's manual

In Netbeans, the option can be found in:

Run => Set Project Configuration => Customize => Libraries => Add JAR/Folder...

Additionally, Javadoc and sources can be attached using the corresponding options in the IDEs.
Once the Java IDE is con�gured, users can start programming their own Net2Plan code.

47

Chapter 6

Technology-speci�c libraries

As stated in previous sections, the NetPlan object contains only the base minimum member elements
corresponding to a technology-agnostic view of the network. For instance, for the links it permits setting
the length in km, the propagation speed of the signal or its capacity, which are concepts applicable to
any network technology. However, if the link e.g. corresponds to an IP link in a network with a routing
controlled by the OSPF protocol, we would be interested in storing in the design the link weight to
apply in shortest path computations. This is an example of technology-speci�c information. For this,
Net2Plan permits the user to add/remove/edit a Map<String,String> of key-value attributes per link,
node, demand, etc. For instance, this link weight information could be stored in an attribute with
key ospf-linkWeight, and value the associated weight converted to String (actually this is the name
chosen by the IPUtils library in Net2Plan).

Current Net2Plan version, provides libraries with speci�c routines used in the following technologies:

• IP networks: The IPUtils class incorporates some routines of interest in IP networks. Among
them, the computation of the tra�c according to OSPF/ECMP weights. Please see the Javadoc
of IPUtils class for the conventions used in Net2Plan when introducing IP speci�c information
in the network model. Also, some built-in algorithms are provided for IP networks, which can
be consulted in the Net2Plan code repository under keywords IP and OSPF.

• Optical WDM networks: The WDMUtils class incorporates some routines of interest in optical
WDM networks. Among them, the routines to handle the occupation of the wavelengths, and
simple algorithms for routing and wavelength assignment. Please see the Javadoc of WDMUtils
class for the conventions used in Net2Plan when introducing WDM speci�c information in the
network model. Also, some built-in algorithms are provided for WDM networks, which can be
consulted in the Net2Plan code repository under keyword WDM.

• Wireless networks: The WirelessUtils class incorporates some routines of interest in wireless
networks. Among them, the routines to compute coverage and interference matrices, accord-
ing to some models of Chapter 5, and algorithms in Part II of [1]. Please see the Javadoc of
WirelessUtils class for the conventions used in Net2Plan when introducing wireless speci�c
information in the network model. Also, some built-in algorithms are provided for wireless net-
works, which can be consulted in the Net2Plan code repository under keyword wireless.

Remember : All key-value pairs in the attribute maps are stored as String values. Users are
responsible to make the proper conversions. For example, you can store an int array as a succession
of numbers separated by spaces.

48

References

[1] Pablo Pavón Mariño, Optimization of computer networks. Modeling and algorithms. A hands-on
approach. Wiley, May 2016. Accompanying website: http://www.net2plan.com/ocn-book.

[2] Robert S. Cahn, Wide area network design: concepts and tools for optimization, Morgan Kaufmann
Publishers Inc., 1998.

49

http://www.net2plan.com/ocn-book

	Introduction
	A brief overlook of Net2Plan
	Organization of this document

	Accompanying book and teaching materials
	Videotutorials
	Installing instructions
	Directories

	Licensing
	Authors
	Net2Plan
	Java Optimization Modeler (JOM)

	Citing Net2Plan and JOM in research works
	Release notes

	The Net2Plan network model
	A network - NetPlan object
	Nodes - Node object
	Links - Link object
	Traffic demands - Demand object
	Multicast traffic demands - MulticastDemand object
	Multicast trees - MulticastTree object
	Routing of unicast traffic: source-routing vs. hop-by-hop routing
	Routing loops
	Source-routing of the traffic - Route object
	Source-routing of the traffic - ProtectionSegment object

	Shared-risk groups - SharedRiskGroup object
	Multilayer networks
	Network layers - NetworkLayer object

	The default failure model in Net2Plan
	Default failure model in multilayer networks

	The Net2Plan Graphical User Interface (GUI)
	Menu File
	File Options
	File Classpath editor
	File Java error console
	File Java error console

	Offline network design
	Network topology panel
	Warnings panel
	View/edit network state tab
	Algorithm execution tab
	View reports tab

	Traffic matrix design
	Traffic generation: general traffic models
	Traffic generation: population-distance traffic model
	Manual matrix introduction/edition
	Traffic normalization
	Creating a set of traffic matrices from a seminal one

	Online network simulation
	The event driven simulation framework
	Graphical User Interface

	Help menu

	The Net2Plan Command-Line Interface (CLI)
	Examples

	Development of algorithms and reports in Net2Plan
	Net2Plan Library, Built-in Examples and Code Repository
	JOM: Java Optimization Modeler
	Preparing a Java IDE for Net2Plan programming

	Technology-specific libraries
	References

