

Net2Plan: The open-source network planner

José Luis Izquierdo Zaragoza josel.izquierdo@upct.es http://ait.upct.es/~jlizquierdo

Politecnico di Milano

Milano, Italy, November 22-27, 2013

This research was partially supported by a predoctoral FPU fellowship from the Spanish Ministry of Education, Culture and Sport (reference no. FPU12/04571) and a mobility grant from Universidad Politécnica de Cartagena (PMPDI-UPCT-2013)

Outline

1 Lab work

ILP models for RFWA Heuristic for RFWA Column generation for FA 2 Real-world case study: IP-over-WDM

Outline

1 Lab work

ILP models for RFWA Heuristic for RFWA Column generation for FA

2 Real-world case study: IP-over-WDM

Lab work

- "Network design" integrated course covers a number of network design problems
- In this seminar we are reviewing Net2Plan, an open-source network planning tool
- It's time to put everything together!
 - ullet ILP models for RFWA $igcar{\}$ Communication Network Design
 - Heuristic for RFWA \int (Prof. Tornatore)
 - Column generation \leftarrow Graph Optimization (Prof. Carello)

ILP models for RFWA Heuristic for RFWA Column generation for FA

ILP models for RFWA

- Several ILP models for RFWA have been presented:
 - Unprotected case: FF/RF/SF VWP/WP
 - Dedicated path protection: "Max half" VWP, FF/RF VWP/WP
 - Shared path protection: RF VWP/WP, FF VWP
 - Dedicated/Shared link protection: FF VWP
- We are going to focus on some of them:
 - Unprotected case: FF/RF VWP, RF WP
- For all examples, the objective is to minimize the number of installed fibers

ILP models for RFWA Heuristic for RFWA Column generation for FA

Unprotected case, flow formulation, VWP

Solenoidal ity	$\sum_{k \in A_l} x_{k,l,c} - \sum_{k \in A_l} x_{l,k,c} = \begin{cases} v_c & \text{if } l = d_c \\ -v_c & \text{if } l = s_c \end{cases}$	$\forall l, c$
Capacity	$\sum_{c} x_{l,k,c} \le W \cdot F_{l,k} \forall (l,k)$	
Integrity	$ \begin{array}{c} x_{l,k,c} \text{ integer } \forall c, (l,k) \\ F_{l,k} \text{ integer } \forall (l,k) \end{array} $	

ILP models for RFWA Heuristic for RFWA Column generation for FA

Unprotected case, route formulation, VWP

- *r*_{c,n}, number of connections routed on the *n*-th admissible path between source
 destination nodes of the node-couple c
 - R_(l,k): set of all admissible paths passing through link (l,k)

Solenoidal ity	$\sum_{n} r_{c,n} = v_c \forall \ c$
Capacity	$\sum_{r_{c,n}\in\mathcal{R}_{l,k}} r_{c,n} \le W \cdot F_{l,k} \forall (l,k)$
Integrity	$r_{c,n}$ integer $\forall (c,n)$
megny	$F_{l,k}$ integer $\forall (l,k)$

ILP models for RFWA Heuristic for RFWA Column generation for FA

Unprotected case, route formulation, WP ILP models for RFWA

Solenoidal ity	$\sum_{n} r_{c,n,\lambda} = v_{c,\lambda}$ $\sum_{\lambda} v_{c,\lambda} = v_{c}$	$\forall c, \lambda$ $\forall c$
Capacity	$\sum_{r_{c,n}\in R_{l,k}} r_{c,n,\lambda} \le F_{l,k}$	$\forall (l,k), \lambda$
	$r_{c,n,\lambda}$ integer \forall	$\forall (c,n), \lambda$
Integrity	$F_{l,k}$ integer	$\forall (l,k)$
	$v_{c,\lambda}$ integer	$\forall c, \lambda$

ILP models for RFWA Heuristic for RFWA Column generation for FA

Heuristic for RFWA

- Connection request sorting rules
 - Longest first
 - Most requested couples first
 - Balanced
 - Random
- Processing of an individual lightpath
 - Routing, Fiber and Wavelength Assignment (RFWA) criteria
 - Dijkstra's algorithm performed on the multifiber layered graph

ILP models for RFWA Heuristic for RFWA Column generation for FA

Column generation for FA I

- Given a problem with exponentially many variables (set *P*)
- Initially a problem is solved with a subset of the variables $P_0 \subset S$ (Restricted Master Problem, RMP)
- In the dual problem of the RMP only a subset of constraints is considered
- Let x^{*} be the optimal solution of RMP and u^{*} the corresponding complementary dual solution: if u^{*} is feasible for the whole problem in which all the dual constraints are considered → both solutions are optimal
- Otherwise:
 - x* is not optimal
 - At least one dual constraint, associated to a primal variable not belonging to P_0 is violated
 - Such constraint must be found out and added to the dual problem (pricing procedure)

ILP models for RFWA Heuristic for RFWA Column generation for FA

Column generation for FA II

• The set of columns of RMP is updated and RMP is solved again

min ho

$$\sum_{p \in P_d} x_p = h_d \qquad \qquad \forall d \in D \qquad \qquad \lambda_c$$

$$\sum_{d\in D}\sum_{p\in P_d}x_p=\rho\cdot u_e\qquad \forall e\in E\qquad \pi_e\leq 0$$

$$x_p \in \{0, 1\}$$

 $ho \in \mathbb{Z}^+$

• Dual constraint: For each demand $d \in D$ and each path $p \in P_d$, the dual constraint is:

$$\lambda_d + \sum_{e \in p} \pi_e \le 0$$

ILP models for RFWA Heuristic for RFWA Column generation for FA

Column generation for FA III

- Pricing:
 - Find a path such that the corresponding dual constraint is violated

$$\sum_{e \in p} -\pi_e \le \lambda_d$$

• That is, we are looking for the shortest path from the ingress node to the egress node of demand d on a graph on which the cost of link $e \in E$ is

 $-\pi_e$

- If the shortest path length is greater than λ_d , for all the demands, the solution of the RMP is optimal for the original problem
- Otherwise, there exists at least one demand such that the corresponding dual constraint is violated: add a new variable to the RMP

Outline

1 Lab work

ILP models for RFWA Heuristic for RFWA Column generation for FA **2** Real-world case study: IP-over-WDM

Politécnica de Cartagena

Transparent Optical Networks in a nutshell Real-world case study: IP-over-WDM

Problem statement Real-world case study: IP-over-WDM

- Our aim: Complete IP-over-WDM case study using Net2Plan
 - P. Pavon-Marino, J.L. Izquierdo-Zaragoza, "Net2Plan: An open-source network planning tool for bridging the gap between academia and industry," submitted to *IEEE Network Magazine*
- Three main parts:
 - Offline multilayer network planning
 - Resilience analysis
 - Energy-efficiency analysis

Offline multilayer network planning I Real-world case study: IP-over-WDM

- Given a fiber plant, the number of wavelengths per fiber, the binary rate per wavelength and an IP traffic matrix, to solve the VTD problem
- Requirements:
 - OSPF/ECMP routing at the IP layer
 - 1+1 dedicated lightpath protection, (sub-)path restoration
 - Lightpath utilization below 50%
 - E2E delay below 50 ms
 - Optical reach: 2800 km
 - Full wavelength conversion
- Objective function: Minimize CAPEX (transponders + regenerators/wavelength converters)

Offline multilayer network planning II Real-world case study: IP-over-WDM

• Two-step heuristic:

- Step 1: Build a full-mesh virtual topology (so, no grooming) using an ILP DPP route formulation
- Step 2: Try to reduce the number of lightpaths by adding grooming to the picture with OSPF
 - Sort lightpaths in descending order of cost (in number of regenerators/wavelength converters)
 - Reroute traffic by optimizing OSPF weights while link utilization is not violated. If possible, remove it

Offline multilayer network planning III Real-world case study: IP-over-WDM

binversidad Paikernia de Gentageno git

Offline multilayer network planning IV Real-world case study: IP-over-WDM

Resilience analysis Real-world case study: IP-over-WDM

- Upon completion, the design is evaluated in terms of resilience under failures and energy-efficiency
- Resilience analysis is divided into two parts: availability analysis and disaster vulnerability
- Availability results:

Maran	1+1 pr	1+1 protection		Path restoration		Sub-path restoration	
rear	Report	Simulation	Report	Simulation	Report	Simulation	
2014	99.724%	99.721%	99.999%	99.999%	99.999%	99.999%	
2020	99.721%	99.714%	99.999%	99.999%	99.999%	99.999%	
2025	99.724%	99.716%	99.999%	99.999%	99.999%	99.999%	

• Disaster vulnerability results:

Year	1+1 protection	Path restoration	Sub-path restoration
2014	80.60%	85.71%	85.71%
2020	81.12%	85.71%	85.71%
2025	82.09%	85.71%	85.71%

Energy-efficiency analysis Real-world case study: IP-over-WDM

- Finally, we know that Internet traffic varies along the day, so let's take advantage to save energy (and money)
- Main idea: Try to switch off as many lightpaths as possible so that the total energy consumption is minimized
- Results:

Thank you for your attention!!! Questions?

José Luis Izquierdo Zaragoza http://ait.upct.es/~jlizquierdo josel.izquierdo@upct.es

Net2Plan: The open-source network planner

José Luis Izquierdo Zaragoza josel.izquierdo@upct.es http://ait.upct.es/~jlizquierdo

Politecnico di Milano

Milano, Italy, November 22-27, 2013

This research was partially supported by a predoctoral FPU fellowship from the Spanish Ministry of Education, Culture and Sport (reference no. FPU12/04571) and a mobility grant from Universidad Politécnica de Cartagena (PMPDI-UPCT-2013)