public class Bessel extends DoubleConstants
| Modifier and Type | Method and Description |
|---|---|
static double |
i0(double x)
Returns the modified Bessel function of order 0 of the argument.
|
static double |
i0e(double x)
Returns the exponentially scaled modified Bessel function of order 0 of
the argument.
|
static double |
i1(double x)
Returns the modified Bessel function of order 1 of the argument.
|
static double |
i1e(double x)
Returns the exponentially scaled modified Bessel function of order 1 of
the argument.
|
static double |
j0(double x)
Returns the Bessel function of the first kind of order 0 of the argument.
|
static double |
j1(double x)
Returns the Bessel function of the first kind of order 1 of the argument.
|
static double |
jn(int n,
double x)
Returns the Bessel function of the first kind of order n of the
argument.
|
static double |
k0(double x)
Returns the modified Bessel function of the third kind of order 0 of the
argument.
|
static double |
k0e(double x)
Returns the exponentially scaled modified Bessel function of the third
kind of order 0 of the argument.
|
static double |
k1(double x)
Returns the modified Bessel function of the third kind of order 1 of the
argument.
|
static double |
k1e(double x)
Returns the exponentially scaled modified Bessel function of the third
kind of order 1 of the argument.
|
static double |
kn(int nn,
double x)
Returns the modified Bessel function of the third kind of order
nn of the argument.
|
static double |
y0(double x)
Returns the Bessel function of the second kind of order 0 of the
argument.
|
static double |
y1(double x)
Returns the Bessel function of the second kind of order 1 of the
argument.
|
static double |
yn(int n,
double x)
Returns the Bessel function of the second kind of order n of the
argument.
|
public static double i0(double x)
throws ArithmeticException
The function is defined as i0(x) = j0( ix ).
The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval.
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double i0e(double x)
throws ArithmeticException
The function is defined as i0e(x) = exp(-|x|) j0( ix ).
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double i1(double x)
throws ArithmeticException
The function is defined as i1(x) = -i j1( ix ).
The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval.
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double i1e(double x)
throws ArithmeticException
The function is defined as i1(x) = -i exp(-|x|) j1( ix ).
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double j0(double x)
throws ArithmeticException
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double j1(double x)
throws ArithmeticException
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double jn(int n,
double x)
throws ArithmeticException
n - the order of the Bessel function.x - the value to compute the bessel function of.ArithmeticExceptionpublic static double k0(double x)
throws ArithmeticException
The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval.
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double k0e(double x)
throws ArithmeticException
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double k1(double x)
throws ArithmeticException
The range is partitioned into the two intervals [0,2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval.
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double k1e(double x)
throws ArithmeticException
k1e(x) = exp(x) * k1(x).
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double kn(int nn,
double x)
throws ArithmeticException
The range is partitioned into the two intervals [0,9.55] and (9.55, infinity). An ascending power series is used in the low range, and an asymptotic expansion in the high range.
nn - the order of the Bessel function.x - the value to compute the bessel function of.ArithmeticExceptionpublic static double y0(double x)
throws ArithmeticException
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double y1(double x)
throws ArithmeticException
x - the value to compute the bessel function of.ArithmeticExceptionpublic static double yn(int n,
double x)
throws ArithmeticException
n - the order of the Bessel function.x - the value to compute the bessel function of.ArithmeticExceptionJump to the Parallel Colt Homepage