public class DenseFloatMatrix1D extends FloatMatrix1D
Implementation:
Internally holds one single contigous one-dimensional array. Note that this implementation is not synchronized.
Time complexity:
O(1) (i.e. constant time) for the basic operations get, getQuick, set, setQuick and size,
| Constructor and Description |
|---|
DenseFloatMatrix1D(float[] values)
Constructs a matrix with a copy of the given values.
|
DenseFloatMatrix1D(int size)
Constructs a matrix with a given number of cells.
|
DenseFloatMatrix1D(int size,
float[] elements,
int zero,
int stride,
boolean isView)
Constructs a matrix with the given parameters.
|
| Modifier and Type | Method and Description |
|---|---|
float |
aggregate(FloatFloatFunction aggr,
FloatFunction f)
Applies a function to each cell and aggregates the results.
|
float |
aggregate(FloatFloatFunction aggr,
FloatFunction f,
IntArrayList indexList)
Applies a function to all cells with a given indexes and aggregates the
results.
|
float |
aggregate(FloatMatrix1D other,
FloatFloatFunction aggr,
FloatFloatFunction f)
Applies a function to each corresponding cell of two matrices and
aggregates the results.
|
FloatMatrix1D |
assign(float value)
Sets all cells to the state specified by value.
|
FloatMatrix1D |
assign(float[] values)
Sets all cells to the state specified by values.
|
FloatMatrix1D |
assign(FloatFunction function)
Assigns the result of a function to each cell;
x[i] = function(x[i]).
|
FloatMatrix1D |
assign(FloatMatrix1D source)
Replaces all cell values of the receiver with the values of another
matrix.
|
FloatMatrix1D |
assign(FloatMatrix1D y,
FloatFloatFunction function)
Assigns the result of a function to each cell;
x[i] = function(x[i],y[i]).
|
FloatMatrix1D |
assign(FloatProcedure cond,
float value)
Assigns a value to all cells that satisfy a condition.
|
FloatMatrix1D |
assign(FloatProcedure cond,
FloatFunction function)
Assigns the result of a function to all cells that satisfy a condition.
|
int |
cardinality()
Returns the number of cells having non-zero values; ignores tolerance.
|
void |
dct(boolean scale)
Computes the discrete cosine transform (DCT-II) of this matrix.
|
void |
dht()
Computes the discrete Hartley transform (DHT) of this matrix.
|
void |
dst(boolean scale)
Computes the discrete sine transform (DST-II) of this matrix.
|
float[] |
elements()
Returns the elements of this matrix.
|
void |
fft()
Computes the discrete Fourier transform (DFT) of this matrix.
|
DenseFComplexMatrix1D |
getFft()
Returns new complex matrix which is the discrete Fourier transform (DFT)
of this matrix.
|
DenseFComplexMatrix1D |
getIfft(boolean scale)
Returns new complex matrix which is the inverse of the discrete Fourier
(IDFT) transform of this matrix.
|
float[] |
getMaxLocation()
Return the maximum value of this matrix together with its location
|
float[] |
getMinLocation()
Return the minimum value of this matrix together with its location
|
void |
getNegativeValues(IntArrayList indexList,
FloatArrayList valueList)
Fills the coordinates and values of cells having negative values into the
specified lists.
|
void |
getNonZeros(IntArrayList indexList,
FloatArrayList valueList)
Fills the coordinates and values of cells having non-zero values into the
specified lists.
|
void |
getPositiveValues(IntArrayList indexList,
FloatArrayList valueList)
Fills the coordinates and values of cells having positive values into the
specified lists.
|
float |
getQuick(int index)
Returns the matrix cell value at coordinate index.
|
void |
idct(boolean scale)
Computes the inverse of the discrete cosine transform (DCT-III) of this
matrix.
|
void |
idht(boolean scale)
Computes the inverse of the discrete Hartley transform (IDHT) of this
matrix.
|
void |
idst(boolean scale)
Computes the inverse of discrete sine transform (DST-III) of this matrix.
|
void |
ifft(boolean scale)
Computes the inverse of the discrete Fourier transform (DFT) of this
matrix.
|
long |
index(int rank)
Returns the position of the element with the given relative rank within
the (virtual or non-virtual) internal 1-dimensional array.
|
FloatMatrix1D |
like(int size)
Construct and returns a new empty matrix of the same dynamic type
as the receiver, having the specified size.
|
FloatMatrix2D |
like2D(int rows,
int columns)
Construct and returns a new 2-d matrix of the corresponding dynamic
type, entirelly independent of the receiver.
|
FloatMatrix2D |
reshape(int rows,
int columns)
Returns new FloatMatrix2D of size rows x columns whose elements are taken
column-wise from this matrix.
|
FloatMatrix3D |
reshape(int slices,
int rows,
int columns)
Returns new FloatMatrix3D of size slices x rows x columns, whose elements
are taken column-wise from this matrix.
|
void |
setQuick(int index,
float value)
Sets the matrix cell at coordinate index to the specified value.
|
void |
swap(FloatMatrix1D other)
Swaps each element this[i] with other[i].
|
void |
toArray(float[] values)
Fills the cell values into the specified 1-dimensional array.
|
float |
zDotProduct(FloatMatrix1D y,
int from,
int length)
Returns the dot product of two vectors x and y, which is
Sum(x[i]*y[i]).
|
float |
zSum()
Returns the sum of all cells; Sum( x[i] ).
|
assign, copy, equals, equals, get, getNonZeros, like, normalize, set, toArray, toString, viewFlip, viewPart, viewSelection, viewSelection, viewSorted, viewStrides, zDotProduct, zDotProductcheckSize, size, stride, toStringShortensureCapacity, isView, trimToSizeclonepublic DenseFloatMatrix1D(float[] values)
values - The values to be filled into the new matrix.public DenseFloatMatrix1D(int size)
size - the number of cells the matrix shall have.IllegalArgumentException - if size<0.public DenseFloatMatrix1D(int size,
float[] elements,
int zero,
int stride,
boolean isView)
size - the number of cells the matrix shall have.elements - the cells.zero - the index of the first element.stride - the number of indexes between any two elements, i.e.
index(i+1)-index(i).isView - if true then a matrix view is constructedIllegalArgumentException - if size<0.public float aggregate(FloatFloatFunction aggr, FloatFunction f)
FloatMatrix1DExample:
cern.jet.math.Functions F = cern.jet.math.Functions.functions;
matrix = 0 1 2 3
// Sum( x[i]*x[i] )
matrix.aggregate(F.plus,F.square);
--> 14
For further examples, see the package doc.aggregate in class FloatMatrix1Daggr - an aggregation function taking as first argument the current
aggregation and as second argument the transformed current
cell value.f - a function transforming the current cell value.FloatFunctionspublic float aggregate(FloatFloatFunction aggr, FloatFunction f, IntArrayList indexList)
FloatMatrix1Daggregate in class FloatMatrix1Daggr - an aggregation function taking as first argument the current
aggregation and as second argument the transformed current
cell value.f - a function transforming the current cell value.indexList - indexes.FloatFunctionspublic float aggregate(FloatMatrix1D other, FloatFloatFunction aggr, FloatFloatFunction f)
FloatMatrix1DExample:
cern.jet.math.Functions F = cern.jet.math.Functions.functions;
x = 0 1 2 3
y = 0 1 2 3
// Sum( x[i]*y[i] )
x.aggregate(y, F.plus, F.mult);
--> 14
// Sum( (x[i]+y[i])ˆ2 )
x.aggregate(y, F.plus, F.chain(F.square,F.plus));
--> 56
For further examples, see the package doc.aggregate in class FloatMatrix1Daggr - an aggregation function taking as first argument the current
aggregation and as second argument the transformed current
cell values.f - a function transforming the current cell values.FloatFunctionspublic FloatMatrix1D assign(FloatFunction function)
FloatMatrix1DExample:
// change each cell to its sine
matrix = 0.5 1.5 2.5 3.5
matrix.assign(cern.jet.math.Functions.sin);
-->
matrix == 0.479426 0.997495 0.598472 -0.350783
For further examples, see the package doc.assign in class FloatMatrix1Dfunction - a function object taking as argument the current cell's value.FloatFunctionspublic FloatMatrix1D assign(FloatProcedure cond, FloatFunction function)
FloatMatrix1Dassign in class FloatMatrix1Dcond - a condition.function - a function object.FloatFunctionspublic FloatMatrix1D assign(FloatProcedure cond, float value)
FloatMatrix1Dassign in class FloatMatrix1Dcond - a condition.value - a value.public FloatMatrix1D assign(float value)
FloatMatrix1Dassign in class FloatMatrix1Dvalue - the value to be filled into the cells.public FloatMatrix1D assign(float[] values)
FloatMatrix1DThe values are copied. So subsequent changes in values are not reflected in the matrix, and vice-versa.
assign in class FloatMatrix1Dvalues - the values to be filled into the cells.public FloatMatrix1D assign(FloatMatrix1D source)
FloatMatrix1Dassign in class FloatMatrix1Dsource - the source matrix to copy from (may be identical to the
receiver).public FloatMatrix1D assign(FloatMatrix1D y, FloatFloatFunction function)
FloatMatrix1DExample:
// assign x[i] = x[i]<sup>y[i]</sup>
m1 = 0 1 2 3;
m2 = 0 2 4 6;
m1.assign(m2, cern.jet.math.Functions.pow);
-->
m1 == 1 1 16 729
For further examples, see the package doc.assign in class FloatMatrix1Dy - the secondary matrix to operate on.function - a function object taking as first argument the current cell's
value of this, and as second argument the current
cell's value of y,FloatFunctionspublic int cardinality()
FloatMatrix1Dcardinality in class FloatMatrix1Dpublic void dct(boolean scale)
scale - if true then scaling is performedpublic void dht()
public void dst(boolean scale)
scale - if true then scaling is performedpublic float[] elements()
FloatMatrix1Delements in class FloatMatrix1Dpublic void fft()
this[2*k] = Re[k], 0<=k<size/2 this[2*k+1] = Im[k], 0<k<size/2 this[1] = Re[size/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real forward transform, use
getFft. To get back the original
data, use ifft.public DenseFComplexMatrix1D getFft()
public DenseFComplexMatrix1D getIfft(boolean scale)
public void getNonZeros(IntArrayList indexList, FloatArrayList valueList)
FloatMatrix1DIn general, fill order is unspecified. This implementation fills like: for (index = 0..size()-1) do ... . However, subclasses are free to us any other order, even an order that may change over time as cell values are changed. (Of course, result lists indexes are guaranteed to correspond to the same cell).
Example:
0, 0, 8, 0, 7
-->
indexList = (2,4)
valueList = (8,7)
In other words, get(2)==8, get(4)==7.getNonZeros in class FloatMatrix1DindexList - the list to be filled with indexes, can have any size.valueList - the list to be filled with values, can have any size.public void getPositiveValues(IntArrayList indexList, FloatArrayList valueList)
FloatMatrix1DgetPositiveValues in class FloatMatrix1DindexList - the list to be filled with indexes, can have any size.valueList - the list to be filled with values, can have any size.public void getNegativeValues(IntArrayList indexList, FloatArrayList valueList)
FloatMatrix1DgetNegativeValues in class FloatMatrix1DindexList - the list to be filled with indexes, can have any size.valueList - the list to be filled with values, can have any size.public float[] getMaxLocation()
FloatMatrix1DgetMaxLocation in class FloatMatrix1Dpublic float[] getMinLocation()
FloatMatrix1DgetMinLocation in class FloatMatrix1Dpublic float getQuick(int index)
FloatMatrix1DProvided with invalid parameters this method may return invalid objects without throwing any exception. You should only use this method when you are absolutely sure that the coordinate is within bounds. Precondition (unchecked): index<0 || index>=size().
getQuick in class FloatMatrix1Dindex - the index of the cell.public void idct(boolean scale)
scale - if true then scaling is performedpublic void idht(boolean scale)
scale - if true then scaling is performedpublic void idst(boolean scale)
scale - if true then scaling is performedpublic void ifft(boolean scale)
this[2*k] = Re[k], 0<=k<size/2 this[2*k+1] = Im[k], 0<k<size/2 this[1] = Re[size/2]This method computes only half of the elements of the real transform. The other half satisfies the symmetry condition. If you want the full real inverse transform, use
getIfft.public FloatMatrix1D like(int size)
FloatMatrix1Dlike in class FloatMatrix1Dsize - the number of cell the matrix shall have.public FloatMatrix2D like2D(int rows, int columns)
FloatMatrix1Dlike2D in class FloatMatrix1Drows - the number of rows the matrix shall have.columns - the number of columns the matrix shall have.public FloatMatrix2D reshape(int rows, int columns)
FloatMatrix1Dreshape in class FloatMatrix1Drows - number of rowscolumns - number of columnspublic FloatMatrix3D reshape(int slices, int rows, int columns)
FloatMatrix1Dreshape in class FloatMatrix1Drows - number of rowscolumns - number of columnspublic void setQuick(int index,
float value)
FloatMatrix1DProvided with invalid parameters this method may access illegal indexes without throwing any exception. You should only use this method when you are absolutely sure that the coordinate is within bounds. Precondition (unchecked): index<0 || index>=size().
setQuick in class FloatMatrix1Dindex - the index of the cell.value - the value to be filled into the specified cell.public void swap(FloatMatrix1D other)
FloatMatrix1Dswap in class FloatMatrix1Dpublic void toArray(float[] values)
FloatMatrix1DtoArray in class FloatMatrix1Dpublic float zDotProduct(FloatMatrix1D y, int from, int length)
FloatMatrix1DzDotProduct in class FloatMatrix1Dy - the second vector.from - the first index to be considered.length - the number of cells to be considered.public float zSum()
FloatMatrix1DzSum in class FloatMatrix1Dpublic long index(int rank)
AbstractMatrix1Dindex in class AbstractMatrix1Drank - the rank of the element.Jump to the Parallel Colt Homepage